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Abstract

The main bending field for the proposed proton EDM experiment has
to be electrostatic. Though the necessary focusing could be produced
magnetically, this would cause the optics to be different for the counter-
rotating proton beams. Here we limit discussion to electrostatic focusing,
with no magnets whatsoever in the ring.

A few electrostatic cells and lattices of both combined and separated
function type have been considered in an earlier version of this note. A
combined function CDSF-AG lattice and a separated function lattice SF-
AG were analysed and shown to be practical. But this material has been
deleted from the present report because subsequent studies have shown
that only weaker (and hence easier) focusing is desirable. Simple curved-
planar electrodes are now assumed because the strong focusing made pos-
sible by toroidally-shaped electrodes is not needed.

The ameliorating effect of synchrotron oscillations on spin depolariza-
tion is studied. Spin motion of a beam with finite momentum spread but
vanishing betatron amplitudes is described, and a compensation scheme
minimizing spin decoherence is derived. A scheme (using sextupoles) for
compensating decoherence due to betatron oscillations, is then described,
bringing to three the number of constraints to be imposed on the lattice.

A weak FODO lattice satisfying the three decoherence constraints is
described. Though decoherence-compensated, this lattice has to be re-
jected because it “sits on transition”. To avoid transition the horizontal
tune is therefore increased, yielding a “less weak”, fully-compensated,
separated function lattice. It includes long straight sections, but none of
the RF, injection, polarimetry equipment for which the long straights are
essential.
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Acknowledgement
This report started out with the limited goal of designing and describing fully

electrostatic lattice options for the proton EDM experiment. It has evolved into
a broader review of experimental methods for the experiment. Most of these
were well understood before I was even aware such an experiment was being
contemplated. Unaware of the chronology, rather than attempting to figure
out the origins of the various ideas, I simply lift results from various reports
(especially from the December, 2009, BNL review) and from numerous conver-
sations, without accompanying attribution; even including gratuitous pedagog-
ical derivations of well known results in some cases. The title page parenthetic
phrase “(incorporating results due to other pEDM’ers)” is intended to convey
this. Only a few of the ideas are original, and they may not be “good” ideas.
One is the proposal to use beam-beam collisions to monitor the beam polariza-
tion. Though intriguing and instructive I have now shelved this idea and deleted
it from the report. This led naturally to the possibility of stabilizing the beam
polarization by feeding back from the up-down scattering asymmetry to the
RF frequency.1 The discussion of compensation against spin decoherence using
sextupoles, while worked out from scratch, is probably equivalent to previous
discussions by Yuri Orlov.

1 Outline of Report, Possible Configurations,
and Disclaimers

As its title indicates, this report contains miscellaneous calculations relating to
the implementation of a fully electrostatic proton EDM storage ring. The con-
tents can best be inferred from the table of contents. The sections listed there
are largely independent and their order largely arbitrary. Discussions within
sections are intended to be elementary and self-contained. That is, (almost)
everything is calculated from scratch, with handbook formulas introduced even-
tually only for corroboration and extension. Though this may make the paper
hard to read, it is supposed to make it easy to understand, criticize, modify,
extend, and so on.

Various lattice designs have been investigated with various features empha-
sized. Some were described in a preliminary version of this report. It has been
practical to distill many features into a single lattice which is described in detail
in this version.

Two lattice options, both strong alternating gradient rings, seemed ini-
tially to be the most promising for the proton EDM experiment. Simplic-
ity and other considerations favored a separated function, FODO, alternat-
ing gradient (SF-AG) option for focusing in both planes. But, to obtain very

1Bill Morse explains that this would work as follows. By modulating ωRF about its cur-
rently best value, the angle α of the polarization vector is intentionally swept left and right.
The up-down asymmetry observed in scatters is proportional to α. If the up-down asymmetry
is larger for α modulated to the left than for α modulated to the right, it shows that the
central value of α is biased to the left and needs to be moved to the right.
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unequal horizontal and vertical tunes, which were considered likely to be de-
sirable, a hybrid, combined-defocusing, separated-focusing (CDSF-AG) lattice
was also studied. For ideal combined-function vertical focusing the electrodes
would be toroidal but, for design convenience, the electrodes were taken to be
(azimuthally-limited) circular cylinders. With this 2D idealization, the electric
field can be calculated exactly using conformal mapping. A circular orbit of
radius r0 is obtained by setting the major toroidal radius to that value and
the minor toroidal axis to provide the appropriate focusing strength. It seemed
simpler to provide the opposite sign, horizontal focusing by lumped quadrupoles
rather than by combined function, saddle-shaped toroidal electrodes. As men-
tioned already, because only quite weak focusing will be required, much of this
material is now obsolete. But, this material has been retained in the report
as it contains discussion of the treatment of electrostatic (as contrasted with
magnetic) elements.

Slow extraction onto the carbon polarimeter was considered in some detail
for the CDSF-AG case in the earlier version of the report. That material, highly
specific to the CDSF-AG lattice, has been deleted and will have to be repro-
duced for lattices that now seems more practical. Also deleted from this report
is the design of lattices synchronized to the bunch pattern. This design was
predicated on p-p polarimetry and/or current balancing using resonant beam
current monitors. Since both of these ideas now seem obsolete this material has
also been deleted.

For calculating particle orbits and lattice functions it is convenient to ex-
ploit existing accelerator codes, such as MAD and UAL, that assume magnetic
bending and focusing. To accomplish this one can introduce effective bend angle

∆θ
(E)
eff. , effective quadupole coefficient K

(E)
1,eff. and so on. All studies in this re-

port are based on this form of treatment. For more refined future optimization
and simulation it will be appropriate to incorporate electric field effects into the
descriptions in a more transparent way.

Section 7 describes space charge limitations. (Like the previous sections)
much of this material was distributed previously to a few collaborators. Af-
ter having repaired a few errors and misunderstandings pointed out by Alexei
Fedotov, these formulas are in quite good agreement with his.

Section 8 analyses synchrotron oscillations and their effect on polarization
preservation. Subsection 8.1 contains a derivation of standard synchrotron os-
cillation theory; by its use of difference rather than differential equations, the
presentation is somewhat unconventional. The importance, for improved aver-
aging and increased spin coherence time, of linearizing the dependence of on
relativistic γ-factor of revolution period T (γ) is emphasized. Subsection 8.2
analyses spin precession (due to deviation from the magic energy) in the pres-
ence of synchrotron oscillations. Current lore seems to accept, because the equi-
librium state of the proton axis is unstable, that inexorable monotonic deviation
from the equilibrium orientation must occur. To the contrary the analysis in
this section seems to imply that, other than slow drift (subject to correction
by RF feedback) synchrotron amplitude, by itself, do not necessarily cause spin
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decoherence.
The longitudinal focusing has to be at least strong enough to keep the wan-

dering of the proton axis within reasonable bounds (certainly much less than
π/2). Beyond that, further increase of RF voltage may be counter-productive
because of the possibility of resonant-depolarization.

Spin decoherence caused by betatron oscillations is a serious problem. This
is discussed in Section 9. Compensation against spin decoherence is discussed
in Section 12. Eq. (164) is the fundamental formula determining the strengths
SA, SB, and SC of three sextupole families.

Accelerator formulas needed to obtain the compensation formulas are derived
in three appendices.

To reduce betatron-induced spin decoherence both horizontal and vertical
tunes have been reduced to quite small values. But not too small values, because
a certain amount of lattice function variation is required to provide distinguish-
able locations for the required three sextupole families. Contrary to earlier
expectations, however, it is found that enough variability can be designed into
individual cells to avoid the need for lattice sectors dedicated to decoherence
compensation.

The compensation formulas are applied in full numerical detail for an almost
up-to-date lattice in Section 10. While analysing this lattice it was realized that
the lattice was sitting almost exactly “on transition” which would surely be
unacceptable. This called for increasing the horizontal tune.

My most up-to-date electrostatic lattice design is exhibited in Section 13.
This lattice supercedes the lattice of Section 10 in two ways. Though the cell
geometries are identical, the horizontal phase advance per cell, instead of being
equal to the vertical phase advance, is three times greater. With the full lattice
being circular, and consisting of nothing but repetitions of the basic cell, the
same Eq. (164) is used to determine the sextupole strengths for this lattice.

The second major development described in Section 13 is the inclusion of
long straight sections. These will be needed for for injection, RF, extraction, po-
larimetry and so on. None of these details have, as yet, been incorporated. Even
with this simplification it turns out to be hard to incorporate straight sections
without mangling the previously the already-achieved decoherence compensa-
tion.

It would be desirable for the dispersion to be zero in the long straights, but
I found it impossible to achieve that without using bends large compared to
the regular arc bends. I therefore backed off from this requirement and only
matched the straight section optics to the previously-compensated arc optics.
All this is exhibited in Section 13

Finally, some disclaimers: Consistent with the somewhat futuristic present
stage of the project, quite a bit of wishful thinking has gone into the various
lattice designs. Quad strengths have been taken at the high end of what is
thought to be achievable, though a certain amount of freedom has been left
to allow them to be longer but weaker. Active elements, bending elements,
quadrupoles, and sextupoles take up all the longitudinal space, leaving no room
for drift regions that will certainly be necessary for BPM’s and other monitoring
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devices. Remedying this may increase the circumference somewhat, but should
not greatly affect the designs otherwise.

A more serious over-simplification that has been made, in the case of the
SF-AG lattice synchronized to the bunch pattern, is that insufficient horizontal
aperture has been provided in the high βx regions of the arcs adjacent to low β
IP’s. Such a region is illustrated by the solid curves in Fig. ?? and subsequent
figures. One can avoid this problem by replacing all the high-βx IP’s by high-βy
IP’s (shown as broken lines in the various figures). This would take advantage
of the generous vertical aperture in the electrostatic steering elements. And
it would leave colliding beam issues unaffected. It would, however, wreck the
scheme (thought to be needed for spin decoherence compensation) of having
regions of vastly different beta functions at points of high dispersion. If the
(as yet unconfirmed) claims concerning spin precession in Section 8 are valid,
then the need for lattice spin compensation using sextupoles will be relaxed and
high-βx regions may be unnecessary.

Long straight sections have been made available for injection, extraction, RF
and so on, but no attempt has been made to design these features. It is typical
to have dispersion suppression at the ends of major arcs, but this has not been
attempted here.

In agreement with Fedotov’s calculations, the beam intensity required for
measuring beam polarization using external carbon polarimetry seems fairly
conservative. To make elastic p-p scattering polarimetry practical requires sig-
nificantly more aggressive beam intensity assumptions. Other subtleties, such
as hourglass effect, have been ignored. Also the above-mentioned wishful think-
ing about achievable element strengths is nowhere more applicable than to the
design of the low-beta interaction point optics.

Intensity limitation due to intrabeam scattering (IBS) is not addressed. More
to the point, the whole issue of the influence of IBS on the experiment deserves
serious treatment of the sort that can perhaps be best provided by simulation.
It has been understood that simulation is likely to play a significant role in cal-
culating spin decoherence. But the analytic theory of decoherence due to lattice
optics seems (to me) relatively straightforward compared to understanding the
influence of intrabeam scattering.

2 Separated Function Electrostatic Lattices

2.1 Electrostatic Quadrupoles Focal Lengths

For a separated function electric FODO lattice one requires electrostatic quadupoles.
Fig. 1 indicates the design of the quadrupoles used in the muon g-2 experiment[2].
Since it will be important to achieve the highest possible gradient, it will prob-
ably be appropriate to shape the poles as in Fig. 2. This will reduce unwanted,
non-quadrupole multipole content but, more important, it will increase the max-
imum achievable gradient. With the potential at the origin being zero, the
electric potential on the y-axis will be φ = constant y2. This determines the
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Figure 1: Schematic view of the electrodes of an electrostatic quadrupole with
planar electrodes. For the AGS g-2 experiment, the gap length gQ was 10 cm.

constant, in terms of voltage VQ and gap gQ to be −VQ/(gQ/2)2. Then the
electric fields are

Ey(x = 0) =
8VQ
g2
Q

y, and Ex(y = 0) = −8VQ
g2
Q

x. (1)

As drawn, this quadrupole is focusing in the x-plane. For protons of momentum
p, and velocity v, let its focal length be fx. In paraxial approximation, the
deflection angle for displacement x is then

− x

fx
=

∆px
p

=
1

p

dp

dt

lQ
v

=
1

p
eEx

lQ
v

= − 1

pc/e

8VQ
g2

Q

x
lQ
v/c

(2)

where lQ is the length of the element. The quadrupole coefficient K1 (which is
the inverse horizontal focal length per unit element length) is therefore

K1 =
1

fxlQ
=

VQ
βpc/e

8

g2
Q

. (3)

(For the pEDM experiment, β ≈ 0.6, and pc/e ≈ 0.7GV , and a tentative value
for g is 0.02 m.) The linearized equations of horizontal motion in the quadrupole
are

d2x

dz2
= −K1x, and

d2y

dz2
= K1y. (4)

Regrettably the notation here is not universal. The signs have been chosen
to conform to the MAD lattice description conventions. Positive K1 indicates
that the bending field strength increases with increasing x, which results in
horizontal focusing. These same formulas will be applied to focusing in gently
curving sector elements, but then extra “geometric” focusing terms have to be
applied to account for the fact that x and y, rather than being purely Cartesian
variables, are coordinates in a gradually rotating frame.
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Figure 2: Schematic view of an electrostatic quadrupole with parabolic-shaped
electrodes. For the proton EDM experiment gQ ≈ 2 cm (to match the gap width
g in the bending elements) With appropriate filtering the electrodes can also
serve as a beam position monitor (BPM). For simplicity this is assumed to be
the case in this note.

2.2 Horizontal Focusing Transfer Matrices

It is assumed in all cases that horizontal focusing will occur primarily in electro-
static, separated function quadrupoles, (indicated by superscript “sf”) designed
along the lines indicated in Section 2.1. Following Wollnik[8], (though not in
detail) it is convenient to introduce positive real quantities ksf

x and ksf
x in terms

of which the equations of motion are

x′′ + ksf
x

2
x = 0, y′′ + (iksf

y )2 y = 0, (5)

For a pure quadrupole ksf
x = ksf

y = ksf ≥ 0. In the thin lens limit, for a lens of
length L,

qsfx =
1

f sf
x

= ksf sin ksfL, qsfy =
1

f sf
y

= −ksf sin ksfL. (6)

The general solutions of Eqs. (5) are

x(z) = c1 cos ksfz + d1 sin ksfz

y(z) = c2 cos iksfz − id2 sin iksfz = c2 coshksfz + d2 sinh ksfz. (7)
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Expressed in terms of transfer matrices





x
x′

∆



 =





cx sx 0

−sxksf 2 cx 0
0 0 1









x0

x′0
∆0



 , (8)

(

y
y′

)

=

(

cy sy

syk
sf 2 cy

) (

y0
y′0

)

, (9)

where

cx = cos ksfz, sx =
sin ksfz

ksf
, cy = coshksfz, sy =

sinh ksfz

ksf
. (10)

The longitudinal offset coordinate ∆ will be discussed later.
For small z the 1,2 elements reduce to the immediate drift length z and the

2, 1 components reduce to the inverse focal length ascribable to length z. For
a vertically focusing quad the sines and cosines are replaced by sinh and cosh
functions, and the sign of the 2,1 element is reversed.

2.3 Achievable Electrostatic Quadrupole Focusing Strength

For magnetic quadrupoles the quadrupole focal length can be made very small,
thereby permitting short cell length and small beta functions. For electrostatic
quadrupoles it will not be possible to reduce the focal length below some mini-
mum value (at the required proton momentum.) On the other hand, because of
simpler construction and less space wastage at element ends it may be econom-
ical for Lcell to be smaller than would be optimal with magnets. This makes it
appropriate to design electrostatic quadrupoles having the highest possible field
gradient consistent with electrode separation equal to the gap width g of the
lattice steering elements.

According to Eq. (3) the focal length of a pEDM electrostatic half-quadrupole
of length lQ is

fx =
βpc/e

VQ

g2
Q

8

1

lQ

(

e.g.
=

0.6× 0.7 GV

2VQ/gmin.

0.02 m (gQ/gmin.)

4

1

lQ
.

)

(11)

To facilitate the following numerical estimate, both numerator and denominator
have been divided by gmin. which is the minimum distance between electrodes
as shown in Fig. 2. Also one gQ factor has been set to 0.02 m, which matches
the quadrupole aperture to the nominal bending element aperture g. One can
conjecture that the maximum possible electric field value in the quadrupole
will be approximately the same as the maximum possible field value in the
sector bending element. (This is conservative, since the minimum gap in a
quadrupole is much less than the acclerator bore diameter, and reducing the
electrode separation makes it easier to support a given electric field.) Based
on nothing more than the appearance of Fig. 2, which was drawn by eyeball,
the value of the ratio g

Q
/gmin. may be about 3.5. Using the peak field value of
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15MV/m would give 2VQ/gmin. = 15 MeV/m, 2VQ = 86 kV , or VQ = ±42.9 kV,
and dEx/dx = 8VQ/g

2
Q = 0.86 GV/m2.

A private communication from Bill Morse estimates the achievable value of
dEx/dx to be 0.90 GV/m2, close to the value just estimated. (The agreement
at this level is somewhat fortuitous, since he used a different quadrupole design
and gQ = 3 cm instead of gQ = 2 cm.) Bill then shows that this is large enough
(with a safety margin of 1.7), to meet the quadrupole strength requirements
assumed in the Pedm R&D plan dated (6/09). (In particular, full quadrupole
length 2ℓQ = 0.38 m was assumed.)

Returning to Eq. (11), for given lQ, the minimum quadrupole focal length
is estimated to be

fx,min. ≈
0.6× 0.7GV

15 MV/m

0.02 m× 3.5

4

1

lQ
=

1

K1,max. lQ
=

0.49 m2

lQ
(12)

Specific to the proton EDM “magic” momentum, the constraint on quadrupole
field gradient can be expressed as

|K1| < K1,max. = 2.04 m−2. (13)

For an equal tune FODO lattice with cell length Lcell, and typical phase advance
per cell, the half-quadrupole focal length is f = Lcell/

√
2. As an example, with

Lcell = 6 m, the minimal half-quadrupole length is lQ,min. = 0.12 m. With each
full cell containing two full quads, the quadrupoles take up about ten percent of
the longitudinal space. This seems acceptably small, but it suggests that Lcell

cannot be reduced much below 6 m. And, later, when unequal tune lattices are
investigated, values of Lcell greater than 6 m may be needed.

For lattice design it is convenient to treat separated function quadrupoles
as thin lenses while, at the same time, allotting just enough longitudinal space
for the actual thick element. To minimize the quadrupole length ℓQ one must
maximize the quadrupole strength coefficient. For given lens strength q ≡ 1/f
one then obtains

lQ,min. =
q

K1,max.

(

e.g.
= 0.49 m2 q for pEDM

)

. (14)

The discussion has made no allowance whatsoever for a limitation empha-
sized by Bennett, et al. In order to avoid the build up of trapped electrons,
they pulsed the electric quadrupoles on only briefly. This would probably be
unworkable for the EDM experiment. But, since there will be no superimposed
magnetic field, this particular failure mechanism should be absent. Nevertheless
there may be other failure modes, such as sparking induced by stray protons.

3 Unequal Tune FODO Lattice Design

In practice the capability of having greatly different horizontal and vertical tunes
is usually not needed and standard formulas for FODO lattices have equal hor-
izontal and vertical phase advances. But the proton EDM experiment probably
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favors horizontal tune greater than vertical tune. (This gives increased BPM
sensitivity needed for accurately matching the vertical positions of the counter-
circulating beams). Appropriately generalized formulas are therefore needed.
Inverse focal lengths are to be denoted by q ≡ 1/f . Positive q corresponds to
focusing in the x-plane (horizontal).

Cell parameters are indicated in Fig. 3. The cell half-length (distance be-
tween adjacent lens centers) is ℓ. Thin lens half-quadrupoles with strengths
q1 ≡ 1/f1 and q2 ≡ 1/f2, are located at positions indicated 1 and 2 in the
figure. One of q1 and q2 will be positive, the other negative. A (negative) bend
through angle ∆θ is assumed to occur at the center of each half cell. By working
with half-quads, lattice functions will be obtained at quadrupole centers. This is
especially convenient for periodic lattices since the (Twiss) beta function slopes
β′
x ≡ −2αx and β′

y ≡ −2αy then vanish at quad centers. Thin sextupoles of
strength S1 or S2 are centered between the half quads. This preserves clockwise-
counterclockwise symmetry. To simplify the linear model the quadrupole and
sextupole thicknesses, and their adjacent straight section lengths are all ne-
glected. These sextupoles are treated as half sextupoles to make their center
points accessible (in the lattice model) but there would actually be a single unit.

The x transfer matrix 2← 1 is

M
(x)
21 =

(

1 0
−q2 1

) (

1 l
0 1

) (

1 0
−q1 1

)

=

(

1− q1l l
−q1 − q2 + q1q2l 1− q2l

)

, (15)

and a similar matrix for 1← 2 is obtained by switching q1 and q2. The full cell,
1← 1, x-transfer matrix is

M
(x)
11

(

1− q2l l
−q1 − q2 + q1q2l 1− q1l

) (

1− q1l l
−q1 − q2 + q1q2l 1− q2l

)

=

(

1− 2q1l − 2q2l + 2q1q2l
2 2l(1− q2l)

2(−q1 − q2 + q1q2l)(1− q1l) 1− 2q1l − 2q2l + 2q1q2l
2

)

. (16)

l d

l s

l s

l q

q1

q2
q

2 q1

y

x

s
l

∆θ

12

lq

1

Figure 3: Thin lens, separated function electrostatic FODO lattice, showing
dimensioning and element strength parameters. Sextupoles are not shown.
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For a periodic lattice made by repeating these cells, this matrix can be written
in “Twiss” form, with α vanishing, as stated previously;

M
(x)
11 =

(

cosµ(x) β(x) sinµ(x)

− sinµ(x)/β(x) cosµ(x)

)

. (17)

Equating coefficients and generalizing to include y motion by switching the signs
of q1 and q2 leads to

C(x) = cosµ(x) = 1− 2q1l − 2q2l + 2q1q2l
2, sin2 µ

(x)

2
= q1l + q2l − q1q2l2,

C(y) = cosµ(y) = 1 + 2q1l + 2q2l + 2q1q2l
2, sin2 µ

(y)

2
= −q1l − q2l − q1q2l2.

(18)

For the lattice to be stable, both cosine magnitudes have to be less than 1.
The β-functions are obtained similarly;

β
(x)
1 =l

√

1− q2l
1− q1l

√

1

q1l + q2l − q1q2l2
= l

√

1− q2l
1− q1l

√

2

1− C(x)
=

√

1− q2l
1− q1l

l

sin µ(x)

2

,

β
(y)
1 =l

√

1 + q2l

1 + q1l

√

1

−q1l − q2l − q1q2l2
= l

√

1 + q2l

1 + q1l

√

2

1− C(y)
=

√

1 + q2l

1 + q1l

l

sin µ(y)

2

,

(19)

β
(x)
2 =l

√

1− q1l
1− q2l

√

1

q1l + q2l − q1q2l2
= l

√

1− q1l
1− q2l

√

2

1− C(x)
=

√

1− q1l
1− q2l

l

sin µ(x)

2

,

β
(y)
2 =l

√

1 + q1l

1 + q2l

√

1

−q1l − q2l − q1q2l2
= l

√

1 + q1l

1 + q2l

√

2

1− C(y)
=

√

1 + q1l

1 + q2l

l

sin µ(y)

2

.

Note the simple identities,

√

β
(x)
1 β

(x)
2 =

l

sin µ(x)

2

,

√

β
(y)
1 β

(y)
2 =

l

sin µ(y)

2

. (20)

and
β

(x)
1

β
(x)
2

=
1− q2l
1− q1l

,
β

(y)
1

β
(y)
2

=
1 + q2l

1 + q1l
. (21)

Often µ(x) and µ(y) are approximately equal. If they are exactly equal, the
formulas simplify considerably. Taking point 1 to be a horizontally focusing
quadrupole location we define

q1 = −q2 = |q|, (22)

and obtain
cosµ = 1− 2|q|2l2, sin

µ

2
= |q|l, (23)
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as well as the relations,

β
(x)
1 =

√

1 + |q|l
1− |q|l

1

|q| , β
(y)
1 =

√

1− |q|l
1 + |q|l

1

|q| , (24)

β
(x)
2 =

√

1− |q|l
1 + |q|l

1

|q| = β
(y)
1 , β

(y)
2 =

√

1 + |q|l
1− |q|l

1

|q| = β
(x)
1

Then Eqs. (24) reduce to

β
(x)
1 β

(x)
2 = β

(y)
1 β

(y)
2 = f2. (25)

For designing unequal tune lattices one can divide the first of Eqs. (20) by the
second to obtain

β
(x)
1 β

(x)
2

β
(y)
1 β

(y)
2

=
sin2 µ(y)

2

sin2 µ(x)

2

=
−q1 − q2 − q1q2l
q1 + q2 − q1q2l

e.g.
=

1

B2
, (26)

where Eq. (18) was used to eliminate the trigonometric ratio, and B2 is perhaps
a big number, such as 10. Solving the last of Eqs. (26) yields

f1 = −f2 −
B2 − 1

B2 + 1
ℓ. (27)

This formula gives the deviation from equality of focal length f1 from −f2
needed to produce a given ratio B. The factor B can be thought of as a beta
function ratio or, via Eq. (26), as monotonically related to a tune ratio. B
becomes erratically large as the value of the final term approaches ℓ. To achieve
an unbalanced lattice for which the optics remains reasonably under control one
can try opposite sign, equal magnitude deviations. Empirically it seems more
rapidly convergent to first strengthen the quad that focuses in the plane needing
higher tune, while leaving the other quad unchanged.

Choosing B > 1 reduces the focal length of the horizontally focusing quad
at location 1 (i.e. stronger horizontal focusing). In what follows the parameter
B will be generalized as a fudge factor quantifying various aperture-limiting
effects.

3.1 Longitudinal Variation of the Lattice Functions

In the drift regions between quadrupoles the β-functions vary quadratically with
s. At the quad center the slope β′ = dβ/ds ≡ −2α vanishes, but there are slope
discontinuities related to the quad strengths by

∆β′(x) = −2q1β
(x)
1 , ∆β′(y) = 2q1β

(y)
1 , (28)

so the Twiss parameters at the quadrupole exit are given by

α
(x)
1+ =q1β

(x)
1 , α

(y)
1+ = −q1β(y)

1 , (29)

γ
(x)
1+ =

1 + q21(β
(x)
1 )2

β
(x)
1

, γ
(y)
1+ =

1 + q21(β
(y)
1 )2

β
(y)
1

.
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In the region from 1 to 2 the β-functions vary as

β(x)(s) = β
(x)
1 − 2α

(x)
1+s+ γ

(x)
1+ s

2, β(y)(s) = β
(y)
1 − 2α

(y)
1+s+ γ

(y)
1+ s

2. (30)

The slope of the horizontal dispersion function D̃(s) vanishes at the quadrupole
center, but there is a slope discontinuity at 1, due to the quadrupole, such that

D̃′

1+ = −q1D̃1, (31)

and a slope discontinuity ∆θ at l/2 due to the bend (which is being treated as
if concentrated at the center of the half cell). As a result, the value of D̃2 is

D̃2 = D̃1 − q1D̃1l+ ∆θ
l

2
, D̃1 = D̃2 − q2D̃2l + ∆θ

l

2
, (32)

where the same argument has given the second equation also. Solving Eq. (32)
yields

D̃1 =
(1− q2l/2)l∆θ

sin2 µ(x)

2

, D̃2 =
(1− q1l/2)l∆θ

sin2 µ(x)

2

. (33)

For the case of equal tunes as in Eq. (22) these become

D̃1 =
(1 + |q|l/2)l∆θ

|q|l2 , D̃2 =
(1− |q|l/2)l∆θ

|q|l2 , (34)

with the useful consequence that

D̃1 + D̃2

2
=

∆θ

lq2
. (35)

3.2 Setting the Tunes

One can adjust the strengths q1 and q2 to achieve desired values for the phase
advances µ(x) and µ(y). Defining the “average” quantity

S2 =
1

2

(

sin2 µ
(x)

2
+ sin2 µ

(y)

2

)

, (36)

and the “difference” quantity,

∆(S2) = sin2 µ
(y)

2
− sin2 µ

(x)

2
, (37)

Eqs. (18) become

q1l + q2l = −∆(S2)/2, q1lq2l = −S2. (38)

These lead to the quadratic equation

(q1l)
2 +

1

2
∆(S2)q1l − S2 = 0, (39)

with the roots being

q1l = ±
√

S2 + (∆(S2))2/16−∆(S2)/4. (40)

The sign choice depends upon which of the two quads is horizontally focusing—
for FODDOF q1 > 0, q2 < 0, for DOFFOD q1 < 0, q2 > 0.
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3.3 Compensation For Dipole Focusing

The tune shift caused by a small quadrupole perturbation. A result
that is so important in accelerator physics that it deserves to be called “the
golden rule” is that a quadrupole perturbation of strength ∆q, at a point in the
lattice where the beta-functions are βx and β(y), causes tune shifts given by

∆νx =
1

4π
βx∆q, ∆νy = − 1

4π
βy∆q. (41)

For positive q the horizontal tune is shifted to higher value. The same quad
shifts the vertical tune to lower value.
Use of the golden rule to compensate for dipole focusing. There is
a focusing effect due a dipole, say a sector bend, that shifts the horizontal
tune. Especially in small rings, compensating for this shift improves agreement
between desired and achieved tunes. Assume that the magnet lengths satisfy

ld + lq + ls = l. (42)

The effective focusing strength of the dipole (it acts only in the horizontal plane)
is

qd =
(∆θ)2

ld
. (43)

This quadrupole perturbation shifts the tune by an amount

∆ν(x) =
n

4π
qdβ(x) =

n

2π
(∆θ)2

l/ld

sin µ(x)

2

. (44)

where β(x) has been approximated using Eq. (20) and qd taken from Eq. (43).
This tune shift is necessarily positive. To compensate for this perturbation,
which to this point has been neglected, we apply changes ∆q1 and ∆q2 to q1
and q2, applying the condition that both total tune shifts vanish yields

4π∆ν
(x)
1 = 0 =∆q1β

(x)
1 + ∆q2β

(x)
2 + qdβ(x), (45)

4π∆ν
(y)
1 = 0 =−∆q1β

(y)
1 −∆q2β

(y)
2 .

Solving these equations yields

∆q1 = −qd
β

(y)
2

β
(x)
1 β

(y)
2 − β(y)

1 β
(x)
2

l

sin µ(x)

2

, ∆q2 = −∆q1
β

(y)
1

β
(y)
2

. (46)

3.4 Beam Acceptance and Cell Length Determination

To proceed it is necessary to have at least a ball park estimate of the lattice
cell length Lcell that will be required. The optimal phase advance per FODO
cell depends on what is being optimized, but usually µ ≈ π/2. At that point,
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recalling that ℓ = Lcell/2 is the FODO cell half length, according to Eq. (23)
the required lens focal length is

f =
1

q
=
√

2ℓ =
Lcell√

2
. (47)

The experiment depends critically upon the emittances ǫx and ǫy of the proton
beam; in terms of them the beam sizes σx and σy are given by

√
βxσx and

√

βyσy. Let us take ǫ =
√
ǫxǫy for both emittances. This will be most valid in

the (likely) case that the emittances are approximately equal.
Alexei Fedotov[3] has given ǫn,95 = 5− 6µm as a tentative normalized emit-

tance containing 95% of the particles. With β = 0.60 and γ = 1.25, the lower
value corresponds to unnormalized emittance ǫ95 = ǫn,95/(βγ) = 6.7µm. Fedo-
tov also states that the rms emittance is related to the unnormalized emittance
by ǫ95 = 6σ2/β. Expressed in terms of a corresponding beam size σ =

√
σxσy

at a point where the horizontal and vertical sizes are equal, and using Eqs. (25)
and (47) to estimate the parameters, gives

σ ≈
√

fǫ95/6 ≈
√

Lcellǫ95/6√
2

,
(

e.g.
=

√

Lcell × 0.80× 10−6 m.
)

. (48)

The aperture requirements are somewhat different horizontally and vertically.
It is typical for momentum spread and betatron oscillations to contribute more
or less equally to horizontal beam size. One can introduce an (effective beta
function multiplier) factor B(H) ≈ 4 to express this. The main vertical aperture
effect was expressed earlier by the factor B, which we now re-christen as B(V ),
so that B can stand for the larger of B(H) and B(V ). At this stage B can be
thought of as a “fudge factor”, present to allow for beam size increasing effects
already mentioned, or others.

Continuing to let σ stand for either σx or σy , one requires σ to be less than
the electrode half gap g/2 by some numerical factor ηstay clear. For the EDM
experiment one expects to be intentionally scraping some beam on injection, so
a value ηstay clear as small as 1, may be acceptable. Allowing for the various
limitations yields

g

2
> ηstay clear

√
B

√

Lcellǫ95/6√
2

(49)

Expressed as a maximum cell length, this yields

Lcell >
g2

ǫ95

2.1

η2
stay clearB

. (50)

For the tunnel circumference to be acceptably small the gap g has been specified
to not exceed 2 cm. Using B = 4 and ηstay clear = 2 yields maximum cell length
Lcell = 7.8 m.

The numerical coefficient here, especially the factor B, is not reliable here.
But this formula suggests how the maximum cell length depends on other pa-
rameters. Eq. (50) provides an upper acceptable bound for the cell length and

17



Eq. (12) implies a lower achievable bound. In an optimal design these two values
will be approximately equal.

4 Combined Function Electrostatic Bending El-

ements

4.1 Field Calculation

Another approach to allowing strongly unbalanced tunes is to provide the verti-
cal focusing by combined-function, toroidally-shaped steering electrodes. From
the earlier discussion of FODO lattices with vertical tune much less than hori-
zontal, it seems clear that vertical aperture restriction in the vertical focusing
quadrupoles may impose a fundamental limitation. Making the vertical focus-
ing quadrupoles longer (so they can have larger apertures) relieves the problem.
Carrying this to the extreme, we next build vertical focusing into all of the
bending elements.

A characteristic of accelerator magnets is that they are easily accessible from
the side, for example for beam injection or extraction. For the same reason it
is relatively easy to provided generous horizontal aperture in magnets. Electric
bending elements, on the other hand, are more naturally accessible from above
or below. Also, with the dominant bending provided by vertical plates, vertical
aperture is easy to provide, horizontal not. This will remain true even if the
bending elements are curved to provide vertical focusing. The advantage will,
to some extent, be compromised by vertical aperture limitation in the strong,
separated-function, horizontal focusing quadrupoles that are necessarily present
in the lattice. One will have to check that their acceptance is greater than other
obstacles, such as polarimeters or injection or extraction septa.

To provide vertical focusing in weak focusing magnetic accelerators the mag-
net poles are shaped to cause the magnetic field to fall off with increasing
radius—the field index n in the field dependence By ∼ (r0/r)

n is positive (but
smaller than 1 for horizontal stability.) In a combined function, strong focusing,
alternating gradient accelerator some magnets have positive n, some negative,
but “strong” implies the magnitude of n is much greater than 1 in both cases.
For the proton EDM candidate lattice to be discussed here, the only combined
function bends will be vertically focusing and strong, so the electrostatic pa-
rameter analogous to n will be large and positive. This is helpful to keep in
mind as the signs are very confusing.

Electrodes to provide electrostatic bending, as well as focusing are shown
in Fig. 4. A simplification that makes analytic field calculation possible is to
assume the electrodes are circular cylinders projecting normally out of the plane
of the paper. In practice the electrodes will be toroidal in shape. The approxi-
mation will be good when the major bending radius r0 is much greater than the
minor radii R1 and R2 of the inner and outer electrodes respectively. As drawn
the electrodes are complete cylinders, osculating at the point O, diametrically
opposite to the design orbit position. In fact the electrodes will be truncated
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Figure 4: Combined-function, eccentric-cylinder, electrostatic electrodes pro-
posed for proton EDM experiment. The electrodes will, in fact, be truncated,
for example along the broken lines.

roughly as shown.
For 2D geometry the electric field can be calculated using conformal map-

ping. Following Kober[1], the calculation can be based on the geometry shown
in Fig. 5. In the w = u+ iv plane the electric field is that of two parallel plates,
labeled P1 and P2. In this geometry the electric potential φ is a linear func-
tion of (real part) u. An analytic transformation from w to Z = X + iY maps
equipotentials to equipotentials. In this case one seeks a transformation which
transforms the planes P1 and P2 to the inner and outer cylindrical electrodes.
From Kober the complex transformation accomplishing this is

w = u1 +
( u2 − u1

2(R2 −R1)

)

2R2
Z − 2R1

Z
. (51)

Here, with g = 2(R2 − R1) being the central separation gap of the electrodes,
the expression in large parentheses is −Enom., the (negative) nominal electric
field between the plates (treated as planes.) Taking φ = ℜ(w) as the electric
potential yields

φ(X,Y ) = U1 − 2Enom.R2

(

1− 2R1X

X2 + Y 2

)

. (52)

in terms of displacement x from the design orbit,

X = R1 +R2 + x, (53)

and the potential is

φ(x, y) = U1 − 2Enom.R2

(

1− 2R1(R1 +R2 + x)

(R1 +R2 + x)2 + y2

)

. (54)
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Figure 5: Conformal transformation from “parallel plate electric field” to electric
field in region between osculating eccentric circles.
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In the horizontal plane (containing the design orbit) the electric field, Ex =
−∂φ/∂x, is given by

Ex(x, y = 0) = Enom.
4R1R2

(R1 +R2)2

(

1− 2x

R1 +R2
+

3x2

(R1 +R2)2
+ . . .

)

(55)

It seems useful to introduce an average radius R, and re-write this using the
formulas

R1 = R− g

2
, R2 = R+

g

2
. (56)

The result is

Ex(x, y = 0) = Ex0

(

1− x

R
+

3

4

x2

R
2 −

1

2

x3

R
3 + . . .

)

, (57)

where, to suppress a factor whose deviation from 1 will certainly be small and
may be negligible, a newly-nominal electric field

Ex0 ≡ Enom.

(

1− 1

16

g2

R
2

)

(58)

has been introduced. The (assumed to be positive) curvature of a proton with
momentum p is given by

1

r0
= − Er

βpc/e
. (59)

For inward (in the −x direction) acceleration, Er will be negative. Then, in
thin element approximation, the bend angle in an element of length L is given
by

∆θ(E)(x, y = 0) = − L
r0

(

1− x

R
+

3

4

x2

R
2 −

1

2

x3

R
3 + . . .

)

. (60)

Since this formula was calculated using 2D geometry, it is only an approximation
to the true toroidal field. More accurate coefficients in the series may have to
be calculated numerically.

4.2 Chromatic Deflection

This formula has described the deflection of an on-momentum particle of mo-
mentum p0. In a particle tracking program a general particle has momentum
p0 + ∆p. The horizontal orbit equation of Eq. (4) can be augmented to account
for this deviation, assuming, for now, that x = 0;

d2x

dz2

∣

∣

∣

∣

x=0

=
d

dz

dx

dz
=

d

dz

px
p
≈ 1

p

dpx
dz
≈ eEx

pv
. (61)

The longitudinal deviation variable δ used in MAD and UAL is defined by

δ =
∆E
p0c

=
m0c

2∆γ

p0c
. (62)

21



One then finds

∆(pv) = m0∆(γv2) = m0c
2∆

(

γ − 1

γ

)

=
(

1 +
1

γ2
0

) p0v0
β0

δ, (63)

and

pv ≈ p0v0

(

1 +
(

1 +
1

γ2
0

) 1

β0
δ.

)

(64)

Substitution into Eq. (61) yields

d2x

dz2

∣

∣

∣

∣

x=0

= − 1

r0
+

1

r0

(

1 +
1

γ2
0

) 1

β0
δ. (65)

This is the equation of motion for x treated as a Cartesian coordinate. It includes
the design bending force. But we are only looking for the radial acceleration
ascribable to the offset δ. We therefore suppress the first term to obtain

d2x

dz2

∣

∣

∣

∣

x=0

=
1

r0

(

1 +
1

γ2
0

) 1

β0
δ ≡ ∆

r0
. (66)

The fractional stiffness deviation ∆ relates the radius of curvature r of a deviant
particle to the radius of curvature r0 of an on-momentum particle, both in the
same uniform field;

r = r0 (1 + ∆). (67)

∆ is related to the MAD/UAL momentum deviation factor δ by2

∆ =
(

1 +
1

γ2
0

) 1

β0
δ

(

= 2.744 δ for the proton EDM experiment.
)

(68)

5 Thin Element Representation of Electrostatic
Bend/Lens

Unlike in a magnetic field, the speed of a particle is not preserved in an electro-
static element. Depending on transverse displacement, a proton slows down or
speeds up as it enters the element. We wish, nevertheless, to treat the electro-
static bend/lens element as a thin element (even if the element is “thin” only by
virtue of being one of the many slices of an element that is actually “thick”.) In
this approximation the input, output, and central values of x are all the same
for any single slice. (Of course x can change in the drift section between slices.)

For an isolated element, since the electric potential before entry, which we
take to be zero, is equal to the potential after exiting (except for possible exit-
entrance position deviation) the particle speed can be treated as (externally)
conserved. For self-consistency it has to be assumed that acceleration changes

2For comparison with Wollnik’s Eq. (4.58c) one should note that Wollnik’s δK = (K −

K0)/K0 is a fractional kinetic energy, while our MAD/UAL δ = (E−E0)/p0c. The numerators
are the same but our denominator is bigger by p0c/K0 = 3.01.
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the speed discontinuously at the input face, and restores the speed discontin-
uously at the output. In this approximation the magnitude of the particle’s
momentum, while the particle is between the plates, is a function only of its
transverse displacement (x, y), (or, to good approximation, just x.) The par-
ticle’s deflection angle needs to be compensated accordingly for this “inertial”
effect.

In the interior of a thick element, as the particle passes from one slice to
the next, the particle has no possibility of returning to its external speed. But
this does not matter, as its speed stays close to its current internal value on
entering the next slice. (In the limit of infinitesimal slice thickness the speed is
continuous.) When entering the first slice of an actually thick element, or when
exiting the last slice, the effect of the actual fringe field has to be taken into
account. As with magnetic pole-face rotation focusing, there is a focusing effect
of non-normal entry. For now we assume normal entry. Adapting standard
terminology, one can refer to the electrostatic device as a “sector bend”.

In a magnetic field the particle “stiffness” can be taken to be its momentum
p. In an electric field, a consistent definition of stiffness is pv/c or, equivalently,
p2c/E . In passing from outside to inside, both numerator and denominator
change values, which is something of a nuisance.

For a particle with charge e, the total energy inside is

Einside ≈ Eoutside + eEnom. x. (69)

(A proton with x positive will have less kinetic energy than with x negative
because Enom. is negative—the electric field has to be centripetal.) We are as-
suming balanced electrode voltages as shown in Fig. 5, so the energy of a proton
on the design orbit is unchanged upon entry. This simplifies the description of
the design orbit. (If balanced voltages are experimentally inconvenient, small
changes in the formulas will be required.) By incorporating the inertial effect
into the focusing strength coefficients, the energy of each proton will ultimately
be treated as a constant of motion everywhere. But, for now, the equations
will have the proton kinetic energy correctly tracking the electric potential. For
convenience we rearrange Eq. (69) to

Einside

E ≈ 1 +
eEnom. x

E (70)

where here, and from now on, we suppress the “outside” subscript. The total
momentum inside satisfies

p2
insidec

2 = (E + eEnom.x)
2 −m2c4

≈ p2c2 + 2eEnom.E x. (71)

To this approximation
p2
inside

p2
= 1 +

2eEnom.E x
p2c2

(72)
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Combining equations, we obtain

(p2/E)inside

p2/E ≈
1 + 2eEnom.E

p2c2 x

1 + eEnom.

E
x
≈ 1 +

eEnom.

E

(

2

β2
− 1

)

x. (73)

The presence of the final term shows that the particle deflection depends on x
even if the radial electric field is independent of x. To account for this “inertial”
effect, the fractional momentum offset δ could be augmented by the final term.
Though physically faithful, this is somewhat inconvenient, since magnet-centric
computer codes treat δ as a constant of motion (except in RF cavities.)

In practice, the radial electic field will intentionally be designed to have a
component varying proportional to x. This will cause what will be referred to
as a “field effect”, with the field being predominanly “quadrupole”. In what
follows the formalism will be rearranged to subsume the inertial effect into the
quadrupole strength parameter. Summing the inertial effect and the field effect,
the focusing effect of an element can be represented by an (effective magnetic)

quadrupole coefficient K
(E)
1,eff.. Calculation of the effective sextupole coefficient

K
(E)
2,eff. has to be worked out similarly.

6 Electric Parameterization Via Conventional Mag-
net Formalism

6.1 Matching to Conventional Formalism

In TRANSPORT notation, the magnetic field in the horizontal plane containing
the design orbit is expressed as a series

By(x, y = 0) = By0

(

1− n x

r0
+ β

x2

r20
+ γ

x3

r30
+ . . . ,

)

(74)

where the “field index” n is (therefore) defined by

n = − r0
By0

∂By
∂x

∣

∣

∣

∣

x=0

, (75)

where r0 is the design orbit radius. Consider a sector bend magnet of (arc)
length L. The curvature 1/r0 and the bend angle ∆θ(M) of a proton of momen-
tum p are given by

1

r0
=
cBy0
pc/e

, and ∆θ(M) = − L
r0

= −cBy0L
pc/e

. (76)

In MAD notation the same x-dependence is parameterized as

By(x, y = 0) = By0

(

1 +
K1r0

1!
x+

K2r0
2!

x2 +
K3r0

3!
x3 + . . .

)

. (77)
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Matching formulas we have, for example,

K1 = − n
r20
, K2 =

2β

r30
. (78)

In thin element approximation the bend angle is

∆θ(M)(x, y = 0) =
cBy0L

pc/e

(

1 +
K1r0

1!
x+

K2r0
2!

x2 +
K3r0

3!
x3 + . . .

)

. (79)

For counter-clockwise (from above) orbit rotation, to make ∆θ(M) be negative
requires By < 0. Matching coefficients in Eqs. (60) and (79), we can define
parameters

K
(E,field)
1 = − 1

Rr0
, K

(E,field)
2 =

3

2R
2
r0
, K

(E,field)
3 = − 3

R
2
r0
, . . . (80)

The superscripts here include “field” as a reminder that these parameters in-
clude neither the inertial effect nor the toroidal vs. cylindrical geometry effect.
Except for the inertial effect, which distinguishes electric from magnetic ele-
ments, holding p fixed, an accelerator magnet with field By could be replaced
by an electric element of the same length, with central field Er = βcBy and these
field indices, without changing the performance of the accelerator. Comparing
with Eq. (78) one sees that R = r0/n, or

n =
r0

R
. (81)

To incorporate the inertial effect also, using Eqs. (59) and (73), one can define
an effective focusing coefficient

K
(E,eff.)
1 = − 1

Rr0
+

1

r20

r0eEnom.

E

(

2

β2
− 1

)

= − 1

Rr0
+

1

r20

(

1 +
1

γ2

)

. (82)

The effect of being in an electric field proportional to 1/r, rather than a uniform
magnetic field, is that the parenthesized factor would be 1 for a uniform n = 0
magnet. For a less than fully relativistic particle in a weak-focusing, large R
field, this would be a significant alteration; for example it causes the horizontal
tune to be (1 + 1/γ2) rather than 1. For the “strong focusing” we anticipate,
r0 will be much greater than R and the second term of Eq. (82) will be small
or even negligible. For preliminary design studies, especially for strong focusing
with n >> 1 and R ≈ r0/n << r0, it seems justified to simply neglect this
inertial effect

Another error being made is that the electric field is being calculated in 2D,
cylindrical geometry when, in fact, the electrodes are curved longitudinally as
well as transversely.
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6.2 Transfer Map Determination

We can now generalize Eqs. (4) to incorporate Eqs. (66) and (82)

x′′ + (ikcf
x )2 x− ∆

r0
= 0, where (ikcf

x )2 = − 1

Rr0
+

1

r20

(

1 +
1

γ2

)

, (83)

y′′ + kcf
y

2
y = 0, where kcf

y

2
=

1

Rr0
. (84)

The longitudinal rigidity offset parameter ∆ was defined in Eq. (67). Equations
that are very nearly equivalent to these are derived in the Wollnik book[8].
The very different notation, especially concerning the definition of ∆, plus sev-
eral minor misprints, makes it quite difficult to compare the formulas in detail
however. Here we are following Wollnik’s section 4.3.2[8], though varying his
notation somewhat.

Intending to apply these formulas only to strongly horizontal defocusing
elements, an explicit factor of i has been introduced so that we can assume that
kcf
x and kcf

y are both real and positive. The general solutions of Eqs. (83) are

x(z) = c1 cos ikcf
x z − id1 sin ikcf

x z −
∆

kcf
x

2
r0

= c1 coshkcf
x z + d1 sinh kcf

x z −
∆

kcf
x

2
r0
, (85)

y(z) = c2 cos kcf
y z + d2 sinkcf

y z. (86)

Eliminating c1, d1, c2, d2, in favor of initial conditions x0, x
′
0,∆0, y0, y

′
0, at z = 0,

one obtains





x
x′

∆



 =





cx sx dx

sxk
cf
x

2
cx sx/r0

0 0 1









x0

x′0
∆0



 , (87)

(

y
y′

)

=

(

cy sy

−sykcf
y

2
cy

) (

y0
y′0

)

, (88)

where

cx = coshkcf
x z, sx =

sinhkcf
x z

kcf
x

, dx =
coshkcf

x z − 1

r0kcf
x

2 ,

cy = cos kcf
y z, sy =

sin kcf
y z

kcf
y

. (89)

For small z the 1,2 elements reduce to the immediate drift length z and the 2, 1
components reduce to the inverse focal length ascribable to length z.
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7 Space Charge Issues

7.1 Introduction

Estimates of the quantities discussed in this section have already been given
by Alexei Fedotov[3]. I have tried to roughly match the bunch pattern and
intensities that he introduced. (After fixing errors he pointed out) there is
substantial agreement with his results. The presentation here (as elsewhere) is
pretty long-winded, with formulas derived from scratch, largely for pedagogic
purposes. Parameters are given in Table 2.

Table 1: Storage ring parameters

quantity symbol unit low high
intensity intensity

protons per bunch Np 2.0e8 1.0e9
bunches per ring NB 24 24
instrumented IP’s Ninstr. 16 16

instr. IP betas βx/βy m 0.1/0.1 0.1/0.1
no-instr. IP’s 32 32

no-instr. IP betas βx/βy m 15/20 15/20
bunch length σz m 0.1 0.2

beam-beam tune shift ξ 1.6e-3 0.8e-2
Laslett tune shift < ∆QLaslett > 0.036 0.090
p-p collision rate 1/s 1.6 39

7.2 Beam-Beam Tune Shift

The electric field at radius r in a round, transversely Gaussian (s.d. σx = σy=σ),
cylindrical beam of line charge density λ(z) is given by

(

Ex
Ey

)

=
λ(z)

2πǫ0

1− exp(−r2/(2σ2)

r2

(

x
y

)

≈ λ(z)

4πǫ0σ2

(

x
y

)

. (90)

where the final, linearized, version is valid only near the beam axis. The mag-
netic fields are Bx = βEy/c and By = −βEx/c, possibly with reversed signs,
depending on the beam direction. In passing a distance ∆z along the length of a
single oncoming beam bunch, a counter-circulating proton suffers a (linearized)
deflection

∆θx,1 ≡ x∆qx =
∆px
p0

=
e

βγmpc2
1

4πǫ0σ2
(1 + β2)

∆z

2β
λ(z)x

=
1

2β2γ

rp
σ2

(1 + β2)NpP (z)∆z x, (91)

where NpP (z)∆z is the number of protons in the range ∆z in a single bunch.

For a longitudinally Gaussian bunch P = exp(−z2/2σ2
z)/

√

2πσ2
z . The first term
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here is due to the electric field. The second is due to the magnetic field. The
denominator factor 2β comes from the relative velocity 2v. rp = e2/(4πǫ0mpc

2)
= (0.511/938)× 2.82× 10−15 = 1.54× 10−18 m is the classical proton radius.

This x-proportional deflection focuses (actually defocuses) the beam. By the
“golden rule” for accelerator lattices, the focusing causes tune shift

∆Qx = − 1

4π
βx∆qx. (92)

(One must not confuse (horizontal) lattice function βx and relativistic speed
factor β.) Combining factors and integrating over z yields the tune shift caused
by passage through a single oncoming bunch.

For non-round beams the calculation is more complicated. Skipping that
discussion, combining factors and summing overNinstr. bunch passages per turn,
the summed beam-beam tune shift parameters with Ninstr./2 bunches in each
beam are given by

ξx,y ≡ ∆Qx,y = −Ninstr.Np
rp
β2γ

(1 + β2)
β∗
x,y/(4π)

σ∗
xσ

∗
x,y(1 +R)

, (93)

where R, the beam aspect ratio at the IP, is defined by

R =
σ∗
y

σ∗
x

, (94)

Assuming round beams (R=1) and unnormalized emittance ǫ = σ2/β, and
substituting into Eq. (93),

ξ = −Ninstr.Np
rp
β2γ

(1 + β2)
β∗
x,y/(4π)

σ∗
xσ

∗
x,y(1 +R)

= −Ninstr.Np
rp
β2γ

(1 + β2)
1

8πǫ

= −(2× 24)(2× 108)
1.54× 10−18

0.62 × 1.25

1 + 0.62

8π(6.7× 10−6/6)

= 1.6× 10−3. (95)

Beam-beam tune shifts greater than this are routinely achieved in existing stor-
age rings.

7.3 Space Charge (Laslett) Tune Shift

Though a proton feels the force of protons in the counter-rotating beam only
Ninstr. times per turn, it feels the force of protons in its own bunch all the
time. One reason the tune shift calculation was spelled out in some detail in the
previous section, was so that an intermediate result could be used here. Again
the leading effect is a defocusing deflection that can be obtained by adapting
Eq. (91);

∆θx,1 ≡ x∆qx =
1

β2γ3

rp
σ2

NpP (z)∆z x, (96)
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The sign of the magnetic deflection has been reversed, and 1 − β2 = 1/γ2. ∆z
is now to be interpreted as an increment of longitudinal distance along the ring,
and the relative speed is now v rather than 2v. Copying from Eq. (93), the
tune shift of a particle traveling one turn around the machine at position z in a
bunch is

∆QLaslett(z) = −Np P (z) C0
rp
β2γ3

1

4πǫ
, (97)

where C0 is the lattice circumference. The average over positions z of P (z) is

< P (z) >=

∫ ∞

−∞

P 2(z) dz =
1

2πσ2
z

∫ ∞

−∞

e−z
2/σ2

z dz =
1

2
√
πσz

. (98)

Substituting into Eq. (97) yields

< ∆QLaslett > = −Np
rp
β2γ3

1

8π3/2ǫ

C0
σz

= −(2× 108)
1.54× 10−18

(0.62)(1.253)

1

8π(3/2)(6.7× 10−6/6)

C0
σz

= 0.881× 10−5 C0
σz

(

e.g.
= (0.881× 10−5)

414

0.1
= 0.036)

)

. (99)

This value of < ∆QLaslett > seems acceptably small.
Fedotov[4] gives a generalized version of this formula that is applicable to

non-round beams;

∆Qx,y = − Nprp
23/2π3/2β2γ3

1

ǫx,y

(

1 +
√

ǫy,xQx

ǫx,yQy

)

C0
σz

(100)

Fedotov’s calculated tune shifts are Qx = 0.012 and Qy = 0.007, both smaller
than the value 0.036 calculated in Eq. (99). The difference is primarily due to
his smaller assumed circumference (212/414) and larger bunch length (0.4/0.1).

For round beams Eq. (100) agrees with Eq. (99) (except for a factor
√

2).
This factor may correspond to a different averaging of the tune shift. In any case
the tune shift is necessarily somewhat vague since, because different particles
take up longitudinal positions z with different probabilities, they suffer different
tune shifts. In any case the discrepancy is small enough to ignore for the present
purposes.

Experimental data giving limiting values of Laslett tune shift at our (quite
low) beam energy are largely obtained during injection into higher energy ac-
celerators. Since the beams remain at low energy only briefly the limits directly
apply limits on the long term stability of the EDM storage rings. With this
reservation, Machida[5] calculations show little transverse beam blow-up for
tune shifts below 0.25. Weng[6] gives tune shifts in excess of 0.30 in the AGS
during injection of 2× 1013 protons of 200MeV kinetic energy.
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7.4 Luminosity

Tentative collision point optics have been shown in Fig. ?? or Fig. ??. The
crossing point beta function values are β∗

x = β∗
y = 0.1 m. Following Sands[10],

the luminosity L1 at one collision point in a collider is given by

L1 =
f

4

N2
p

Aint
(101)

where Np is the number of protons in each bunch. The revolution frequency
is f = 3 × 108/413.6 = 0.72 MHz. Aint is an effective interaction area. This
formula assumes there is a single bunch in each beam. Summing the luminosities
from all collision points yields

Lsum = Ninstr.
f

4

N2
p

Aint
(102)

where Ninstr. is the number of instrumented low beta intersection poins. As such
it is double the number of “effective” bunches whose p-p scatters and asymme-
tries can be counted. All these collision points are assumed to be identical.

The reason for introducing effective bunches is that some of the bunch cross-
ings may occur at non-waist, not-very-low-β lattice points. Not only will the
collision rates at these points be very small, what there are will not be counted.
Our example has Ninstr. = 16 low beta intersection points but 24 stored bunches.
Of the 48 collision points, the only appreciable p-p scatters occur at the 16 in-
strumented IP’s.

Alexei Fedotov[3] has given ǫn,95 = 5µm as a tentative normalized emittance
containing 95% of the particles. With β = 0.60 and γ = 1.25, this corresponds
to “geometric” emittance ǫ95 = ǫn,95/(βγ) = 6.7µm. Fedotov also states that
95% emittances and r.m.s. emittances are related by ǫ95 = 6ǫ ≡ 6σ2/β. At the
collision point, with βx = βy = β∗, the beam standard deviations are

σ∗ ≈
√

β∗ǫ95/6
(

e.g.
=

√

0.1× 6.7× 10−6/6 = 0.334 mm
)

. (103)

With head-on collisions of short bunches3 the effective crossing area is the same
as the bunch transverse area, which Sands[10], Eq. (6.2) gives as

Aint ≈ πσxσy
(

e.g.
= 0.03342 π = 3.5× 10−3 cm2

)

. (104)

Here we assume Np = 109. Combining factors one obtains, for the summed
luminosity,

Lsum ≈ Ninstr.
f

4

N2
p

Aint

(

e.g.
= 16

0.72× 106

4

1018

3.5× 10−3
= 0.82×1027 cm−2s−1

)

.

(105)

3“Short” bunches are short compared to the beta functions at the crossing point. In the
proton EDM experiment the bunches may be too long to meet this condition. This would
reduce the luminosity, but we will ignore this complication.
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Here Ninstr. = 16 bunch crossings have been assumed, and the luminosity is
quoted in its customary c.g.s. units. It is roughly one inverse millibarn per
second.

7.5 p-p Collision Rates

Some circulating beam kinematic quantities are

gamma0 = 1.24810

E0 = 1.17106 GeV

K0 = 0.23279 GeV

p0c = 0.700740 GeV

beta0 = 0.598379

eta0 = 0.12405

For p-p collisions, the square of the center of mass energy is

s = 4 E0^2 = 5.485568860 GeV^2

To achieve this value with one proton being at rest in the laboratory requires
the laboratory energy of the other proton to be

Elab. =
s− 2(mc2)2

2mc2
(106)

Then

Elab = 1.98495 GeV

Klab = 1.04668 GeV

pclab = 1.73256 GeV

From Bugg et al.[11] the total inelastic p-p cross sections at this energy is
σtot. = 48 mb and the total elastic cross section is σelastic = 23 mb. Multiplying
the total cross section by the luminosity one obtains the scattering rate

ρtot. = (0.82× 1027)× (48× 10−27) = 39 scatters per second, (107)

of which half are elastic. This rate is discouragingly small, in spite of having
increased the proton intensity to its largest plausible value, and having reduced
β∗ to the smallest value consistent with electrostatic focusing.4 This rate cor-
responds to a beam lifetime of

τ =
NpNB
ρtot.

=
109 × 24

39
≈ 6× 108 s, (108)

which is far longer than the anticipated useful storage time of 103 seconds.
Actual beam loss from this source is therefore negligible. But it will be seen
below that the scattering asymmetry (for optimal spin configuration) is so large
that a meaningful polarization measurement can be obtained in a few seconds.

4With magnetic focusing smaller values of β∗ could be achieved, but that option has been
ruled out, at least for this report. The rate could be almost tripled by designing a lattice
with all collision points having low beta values. But this would force the circumference to
be appreciably greater. The presently assumed circumference value, C0 = 416m, has already
been substantially lengthened by its 16 IP requirement.
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8 Synchroton Oscillations and Spin Precession

The averaging effect of synchrotron oscillations is essential for achieving the long
spin decoherence times essential for the proton EDM experiment. The angular
precession rate of a proton depends on the local B or E field, and on its velocity
(or momentum, or energy or β or γ). The deviation of the spin precession rate
from the momentum precession rate is the difference of two terms that cancel
in the “magic” condition. To lowest order in deviation from magic, it does not
matter which of the dynamic quantities is chosen as dependent variable.

The RF cavity applies an impulsive boost to the particle’s energy E . This
makes it natural to use γ = E/(mpc

2) as the dependent synchrotron oscillation
variable, along with time t or turn index j as the independent variable. From
γ(t) so obtained, and the field values encountered on its orbit, one can calculate
the spin precession of any particular proton.

The magic condition for the spin procession rate to match the momentum
precession rate can be expressed as

γ0 =

√

g

g − 2
=

√

5.5856

3.5856
= 1.248. (109)

We will express the precise γ value of a particular proton as

γj = γ0 + ∆γj + δγ0, (110)

where ∆γj is the synchrotron oscillation part, which varies with turn number
j and δγ0 will later be split into two parts, δγ0,1 a deviation from the magic
value due to the fact that the average beam energy is not quite correct, and
δγ0,2 is due to the proton’s betatron amplitude. For the time being we assume
δγ0 = 0, meaning that any effect of betatron oscillations is being neglected
and the average energies of both counter-circulating beams have been exactly
matched to the ideal value.

With the RF frequency fixed, the flight time of a proton in a stable bucket
increases, on average, by T0 = 2πh/ωRF each turn. This average can be taken
to be arbitrarily accurate over the enormous number of turns during which
parameters are typically held fixed. But the paths taken by different particles
are different and their average instantaneous speeds are therefore different. As
a result their spin vectors precess at different rates.

An inconvenience to be faced is that the treatment of synchrotron oscillations
has to be different in magnetostatic and electrostatic rings. In the arcs of
a magnetic lattice, though γ changes discontinuously in the RF cavity, it is
constant in the arcs. In an electic bending element the proton energy changes
with changing radial position.

8.1 Averaging Over Energy

With synchrotron oscillations so well understood, it may seem gratuitous to
derive their properties as will be done next. The justification is to exercise
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tools, elementary but somewhat unconventional, that will be used to analyse
spin precession in the following subsection.

Let T (γ) be the revolution period as a function of γ = γ0 + ∆γ, and let
j = 0, 1, 2, . . . be a turn counter that augments by 1 on each passage through a
fixed point in the lattice, conveniently taken to be at the center of the (single)
RF cavity. The arrival times (relative to reference) are then t0, t1, t2, . . . . Let
∆γj+ be the γ-deviation during the full turn from j to j + 1 and ∆γj− be
the deviation during the preceeding turn. (For off-momentum particles in an
electrostatic ring γ is not quite a constant of the motion. But γ is constant for
the design (reference) particle. For off-momentum particles in electric lattices
γ will stand for the energy outside electric fields.)

With tj+1 − tj = T (γ0 + ∆γj+), and a similar equation for tj−1, the arrival
times satisfy the difference equation

tj+1 − 2tj + tj−1 = T (γ0 + ∆γj+)− T (γ0 + ∆γj−)

=
∂T

∂γ

∣

∣

∣

∣

0

(

∆γj+ −∆γj−
)

+
1

2

∂2T

∂γ2

∣

∣

∣

∣

0

(

∆γ2
j+ −∆γ2

j−

)

+ . . . . (111)

To make the quadratic term vanish we assume the lattice has been designed so
that

∂2T

∂γ2

∣

∣

∣

∣

0

= 0, (112)

and we assume that all subsequent terms are negligible. In other words, we
assume the graph of T (γ) is a perfect straight line for the full range of γ values
in the beam.5 (Remember, also, that betatron amplitudes have been set to
zero.)

A task for the lattice designer is to meet this requirement. The following
digression shows that the condition can be met, at least in special cases.
Digression:
(a) Weak Focusing, Magnetic Lattice. In a weak focusing magnetic lat-
tice the central radius r0 and the magnetic field B(r) are independent of the
longitudinal coordinate. The revolution period T can be obtained from

r =
mpvγ

eB(γ)

also
=

vT

2π
, giving T =

2πmp

e

γ

B(γ)
. (113)

(All of the quantities r, T , and B, depend on γ, but the dependence has only
been shown for B(γ), as we wish to tailor the radial dependence of B.) Solving
differential equation (112), one finds

B(γ) =
B0

B0c2 + (1−B0c2)γ0/γ
, (114)

5Though the discussion has not been formulated in terms of field multipoles, condition (112)
implies the existence of sextupole fields superimposed on the combined function elements, as
well as actual sextupoles.
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where the integration constants have been chosen so that B = B0 when γ = γ0,
and c2 is a free parameter. The effect of the RF is to enforce T = T0, which can
be manipulated to produce

1

γ
=

√

1−
(

2πr

cT0

)2

, and B(γ) =
B0

B0c2 + (1 −B0c2)γ0

√

1− (2πr
cT0

)2
. (115)

(b) Weak Focusing, Electric Lattice.
In an electric lattice Eq. (113) is altered to

r =
mpṽ

2γ̃

eE(γ)

also
=

ṽT

2π
, (116)

where

γ̃ = γ +
eE0

mpc2
(r − r0), and ṽ2 = c2

(

1− 1

γ̃2

)

(117)

allow for the altered particle energy as a function of radial position in the electric
bending field. Note that E0 is negative. Also, in spite of the fact that the proton
is inside the bending field essentially all the time, γ continues to stand for the
value the proton would have outside, for example at the center of the RF cavity.
Obtaining T as a function of γ is more complicated in this case, which further
complicates, but is unlikely to prevent, obtaining the dependence of E on r
needed to satisfy Eq. (112).
End of Digression.

The effect of the RF cavity is to alter the particle energy according to

∆γj+ −∆γj− = −eV̂RF
mpc2

sin(ωRF (jT0 + tj)) = −eV̂RF
mpc2

sin(ωRF tj), (118)

where T0 is the design revolution period, ωRF = 2πh/T0, integer h is called the
harmonic number, and the time origin has been adjusted so that the RF valtage
vanishes at t = 0. For small time deviations from 0,

VRF (t) ≈ V̂RFωRF t. (119)

Substitution into Eq. (111) yields

tj+1 − 2tj + tj−1 = −∂T
∂γ

∣

∣

∣

∣

0

eV̂RF
mpc2

sin(ωRF,0tj). (120)

The linearized (small tj) version of this equation is

tj+1 − 2 cosµs tj + tj−1 = 0, (121)

where6

cosµs = 1− 1

2

dT

dγ

∣

∣

∣

∣

0

eV̂RF
mpc2

ωRF ; (122)

6Note that V̂RF is not necessarily positive, but the product V̂RF dT/dγ has to be positive
for cos µs to correspond to a real angle µs.
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Figure 6: RF waveform and definition of overvoltage factor GRF ;
sin(ωRF tmax) = 1/GRF . For GRF >∼ 2, tmax ≈ 1/(GRFωRF ). Because the

operating point is at the origin, there is faithful averaging even for particle am-

plitudes large enough for the motion to be nonlinear.

The general solution of this linearized equation is

tj = tmax sin(µsj + φ0). (123)

tmax and φ0 are fixed by the initial conditions for a particular proton being
tracked, t0 = tmax sinφ0. (In the next subsection, where spin direction evolution
is analysed, the spin direction at this instant will be taken to be α0.) For the
evolution of ∆γj we try

∆γj = −∆γmax cos(µsj + φ0). (124)

The change in ∆γj in one turn then has to be

d

dj
∆γj = ∆γmaxµs sin(µsj + φ0)

also
=

eV̂RF
mpc2

sin(ωRF tj)

=
eV̂RF
mpc2

ωRF tmax sin(µsj + φ0), (125)

where tj , as given by Eq. (123), has been assumed to be small. The maximum
time and energy excursions are then related by

∆γmax =
eV̂RF
mpc2

ωRF
µs

tmax. (126)

The maximum γ change per turn (d∆γ/dj)max can also be expressed in terms
of the “overvoltage factor” GRF shown in Fig. 6, and as the coefficient of the
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first of Eqs.(125);

d∆γ

dj

∣

∣

∣

∣

max

=
1

GRF

eV̂RF
mpc2

= µs∆γmax. (127)

So ∆γmax is also given by

∆γmax =
1

GRF

eV̂RF
mpc2

1

µs
. (128)

From Eq. (126) we then also have

tmax ≈
1

ωRF

1

GRF
. (129)

This equation is expressed only as an approximation since it manifestly disagrees
with the definition of GRF shown in Fig. 6. The disagreement has come from
the linearization assumptions. For GRF > 2 the disagreement is less than 5%.

This is pure (digital) simple harmonic motion and ∆γj averages exactly to
zero over many turns. Furthermore the symmetry of the equations is such that
this averaging to zero will apply even when the linearization ceases to be a good
approximation.

One may say that this is no surprise—we knew all along, from established
theory that ∆γj had to average to zero. But before McMillan and Veksler
invented synchrotron stability, they did not know that ∆γj had to average to
zero. For that matter, had we started with energy offset δγ0 6= 0, then ∆γj would
have had to average to −δγ0 divided by the number of terms in the average.
Or, if the RF phase were varied monotonically, the proton could actually be
systematically accelerated. All that has been shown, then, is that the formulas
introduced so far conform with well established accelerator physics.

So far these comments have applied just to the linearized longitudinal equa-
tion of motion. But, if the graph of T (γ) is a perfect straight line for the full
range of γ values in the beam, and the design orbit is matched to the magic
value γ0, then, averaging over many turns,

〈γj〉 = γ0, (130)

even for large momentum offsets (though small enough for the proton to stay
in its stable bucket).

In a purely magnetic lattice γ is a constant of the motion. A particle having
always the “magic” γ would behave like a Dirac particle. That is, its spin would
exactly track its momentum, irrespective of its betatron oscillation amplitudes.
This seems to make the averaging principle quite powerful, at least in magnetic
lattices. But betatron oscillations cause the magic condition to be not satisfied
on an instantaneous basis, which weakens the effectiveness of the averaging.
(In practice the magic condition will also be not quite satisfied because of not
quite correct beam energy, but ways of cancelling this drift over time are easily
imagined.)
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In an electrostatic lattice, γ is not a constant of the motion. One can hope,
however, that the shifts due to radial energy changes will average out to adequate
accuracy.

8.2 Spin Precession

Still neglecting the effect of betatron oscillations, it will be shown that the spin
orientation angle of an individual proton can be expressed as the sum of the
following four terms:

αj = α0 + 2π

(

g

2
− 1 +

g/2

γ2
0

)

δγ0 j + α
(F )
j + α

(N)
j . (131)

The first is an initial condition, the second is due to mean energy deviation
(which is correctable, on the average, over time) and (only partially correctable)
effects of betatron osciallation, the third is fast oscillation synchronized with
longitudinal oscillations, and the fourth is (probably negligible) resonant depo-
larization. Assuming the polarization orientation can be monitored and fed back
via the RF frequency, the dominant limitation for the proton EDM experiment
will be spin depolarization due to betatron oscillations.

The synchrotron tune Qs only needs to be high enough to limit the sweeping

action of the α
(F )
j term to an acceptably small angular range, such as ±0.5 r.

8.2.1 Small Amplitudes, No Deviation from “Magic” Condition

We remind again that betatron oscillations have been, and will, in this subsec-
tion, continue to be, neglected. That is we assume all betatron amplitudes are
small enough to have no effect on the revolution period. We also assume the
central beam energy is exactly matched to the magic value.

The leading impediment to measurement of the proton electric dipole mo-
ment (other than its smallness) is the precession of the proton axis due to its
magnetic moment. With the spin vector s starting in the forward direction, and
the magnetic field (in the proton rest frame) vertical, s remains in the horizon-
tal plane. See Fig. 7. Jackson’s[9] Eq. (11.171) gives the rate of change in an
electric field E, of the longitudinal spin component as

d

dt
(β̂ · s) = − e

mpc
s⊥ ·E

(

gβ

2
− 1

β

)

(132)

Using β̂ · s = s cosα, s⊥ = −x̂ s sinα, and E = −x̂E, this equation reduces to

dα

dt
=

eE

mpc

(

gβ

2
− 1

β

)

. (133)

Meanwhile the velocity vector itself has precessed by angle θ relative to a direc-
tion fixed in the laboratory. Its precession rate is governed by the equation

dθ

dt
=

d

dt

(

s

r

)

=
eE

p
. (134)
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Figure 7: Spin vector s has precessed through angle α away from its nominal
direction along the proton’s velocity.

where, as in Eq. (59), the curvature is 1/r = eE/(vp) and where (just in this
equation) s temporarily stands for arc length along the orbit. Dividing Eq. (133)
by Eq. (134) yields

dα

dθ
=

pc

mpc2

(

gβ

2
− 1

β

)

=

(

g

2
− 1

)

γ − g/2

γ
. (135)

One can check that dα/dθ vanishes at the magic condition γ = γ0. During
a single turn around the ring θ advances by 2π and the advance of α can be
obtained from this equation. Introducing γj± = γ0 +∆γj± as in Section 8.1, αj
satisfies the difference equations

αj+1 − αj = 2π

(

g − 2

2
γj+ −

g/2

γj+

)

,

αj − αj−1 = 2π

(

g − 2

2
γj− −

g/2

γj−

)

. (136)

Subtracting these equations yields

αj+1 − 2αj + αj−1 = 2π

(

g − 2

2
(γj+ − γj−)− g

2

( 1

γj+
− 1

γj−

)

)

≈ 2π

(

g − 2

2
+
g/2

γ2
j

)

(∆γj+ −∆γj−), (137)

where Eqs. (118) has been used. The motivation for these manipulations has
been to introduce and replace the common factor (∆γj+ − ∆γj−) that plays
a prominent role in the description of the synchrotron oscillations themselves.
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Substitution from Eqs. (118), (123), and (126), and assuming small tj yields

αj+1 − 2αj + αj−1

= −2π

(

g − 2

2
+
g/2

γ2
j

)(

eV̂RF
mpc2

sin(ωRF tj)

)

= −2π

(

g − 2

2
+
g/2

γ2
j

)

µs∆γmax sin(µsj + φ0). (138)

From here on we set φ0 = 0.
The only significant approximation that has been made so far has been the

replacement of the product γj+γj− by γ2
j in the denominator of the second term

of the parenthesized factor. The average error from this replacement is

〈γj+γj−〉 − γ2
j = −∆γ2

maxµ
2
s/8. (139)

This seems certain to be negligible (especially because it only introduces a small
fractional variation in the coefficient of the time-varying factor sin(µsj)).

We defer consideration of the nonlinear term 1/γ2
j in Eq. (138) (which com-

plicates the difference equation significantly) and approximate γj ≈ γ0. In this
approximation the motion of α is governed by the discretized version of driven

simple harmonic motion at frequency µs;

αj = α0 + π∆γmaxµs

(

g − 2

2
+
g/2

γ2
0

)

sin(µsj)

1− cosµs

= α0 + 11.26 ∆γmaxµs
sin(µsj)

1− cosµs
. (140)

where the initial spin direction is α0. Notice that the constant term α0 satisfies
the difference equation all by itself. For that matter a term αj = α′

0j also satis-
fies the difference equation for arbitrary constant α′

0. We neglect this possibility
for now, but will return to it in Section 8.2.2. In this approximation there is
“fast” synchrotron oscillation about α0. The amplitude of this fast oscillation
is given by

α(F )
max. = π∆γmax

(

g − 2

2
+
g/2

γ2
0

)

µs
1− cosµs

≈ ∆γmax

(

g − 2

2
+
g/2

γ2
0

)

2π

µs

= 3.586
∆γmax

Qs
. (141)

assuming µs ≡ 2πQs << 1.
Consider next the effect of the 1/γ2

j term in Eq. (118). The equation can

be solved by first expanding sin(µsj)/γ
2
j into a Fourier series, for example using

the expansion

sinµsj

(1 + a cosµsj)2
−sin(µsj) = −a sin(2µsj)+

3

4
a2 sin(3µsj)−

1

2
a3 sin(4µsj)+. . . ,

(142)
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where, in each harmonic term, only the lowest power of

a =
∆γmax

γ0
(143)

has been retained. Two features of the Fourier series are especially noteworthy.
It has no constant term and, with, presumably, GRF∆γmax << γ0, it is rapidly
convergent. The drive term in Eq. (138) is now a sum of monochromatic terms,
and the motion is the superposition of harmonic motions at the fundamental
“frequency” µs and higher harmonic frequencies jµs.

The response to the higher harmonic drive terms of Eq. (142) needs to be
added to the linear motion of Eq. (140). The newly added nonlinear response
terms are

α
(N)
j = π∆γmaxµs

g/2

γ2
0

(144)

×
(

− a sin(2µsj)

1− cos 2µs
+

3

4
a2 sin(3µsj)

1− cos 3µs
− 1

2
a3 sin(4µsj)

1− cos 4µs
+ . . .

)

.

There is now the possibility of resonance. This is most conveniently analysed
in terms of the tune Qs = µs/(2π), whose typical value is near the low end of
the range 0 < Qs < 1. When Qs = l/m, where l and m are integers, there is
a term in the expansion for which cos(mµs) = 1. According to Eq. (144) this
term exhibits uncontrollable secular growth.

The tune Qs = µs/(2π) is sure to be much less than 1. The closest resonance
is therefore atQs = 0. A constant term (i.e. independent of j) on the right hand
side of Eq. (138) would drive this resonance. Fortunately, as noted previously,
there is no constant term in Eq. (142). The beam polarization is therefore
protected from at least this possible source of decoherence. (This is due, however
to our assumption so far that the beam energy has exactly the magic value. The
effect of deviation from this assumption is discussed in Section 8.2.2.)

No matter what the value of µs there will be values of l and m for which
the resonance condition is approximately satisfied. In a real beam, with its
continuum of synchrotron tunes (over finite time intervals), the resonance con-
dition will be exactly satisfied for some particles over lengthy periods of time.
Commonly in such situations, the effect of increased amplitude is to pull the
frequency off resonance. But in our case, with Stern-Gerlach forces neglected,
the secular growth of α has no effect whatsoever on the particle’s synchrotron
tune. Clearly the fraction of the beam containing particles having tunes on
resonance long enough will be depolarized.

Because Qs << 1, resonance will occur only in very high order where the
Fourier coefficients are very small. From what has been said, if the Qs = 0
resonance is, in fact, unimportant, this suggests that low synchrotron tunes are
advantageous. But Qs has to be at least high enough to keep ∆αmax << π.
Otherwise the average up-down tipping of the proton axis caused by the electic
dipole moment would be reduced unacceptably.

The Qs = 0 resonance makes its presence known largely through the factor
1− cosµs in the denominator of Eq. (141) which causes the angular amplitude
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of spin oscillation per unit γ-deviation to be inversely proportional to Qs, as
shown in Eq. (141).

8.2.2 Deviant Beam Energy

To account for systematic deviation of δγ0 of the central beam energy from the
magic value γ0 Eq. (135) can be expanded

dα

dθ
=

(

g

2
− 1

)

(γ0 + δγ0)−
g/2

γ0 + δγ0
=

(

g

2
− 1 +

g/2

γ2
0

+ . . .

)

δγ0. (145)

Averaging this equation over multiple terms, and dropping higher order terms
yields

〈

dα

dθ

〉

=

(

g

2
− 1 +

g/2

γ2
0

)

δγ0 = 3.586 δγ0. (146)

(There is no need to write 〈δγ0〉 since, as defined, δγ0 already stands for that
average.)

Spin evolution with δγ0 = 0 has been described already by Eqs. (140), (141),

and (144), which give αj as the initial spin direction, α
(F )
j as fast, synchrotron

oscillation induced oscillation, and α
(N)
j as oscillations at higher harmonics of

the synchrotron frequency. None of these terms cause secular drift of the po-
larization axis, such as given by Eq. (146). Including the contribution from
Eq. (146) yields

αj = α0 + 2π

(

g

2
− 1 +

g/2

γ2
0

)

δγ0 j + α
(F )
j + α

(N)
j . (147)

It was already noted, below Eq. (140), that a term like this, linear in j, could
be added without violating the difference equation.

One way or another, a way will have to be found to cancel the inexorable
drift given by the second term. If the polarization vector orientation can be
measured quickly enough (which seems likely) then the drift can be reversed
and controlled.

9 Betatron-Induced Decoherence

The fact that we do not yet have a self-consistent formalism for electrostatic

lattices is nowhere more important than in this section. Formulas applicable for

magnetic lattices are used in conjunction with electrostatic formulas. Much of

the discussion should not be affected qualitatively by this defect, but precession

compensation formulas will, as a result, certainly not be quantitatively accurate.

The presentation is intended, therefore, mainly as a template for subsequent,

more realistic, calculations. To simplify the formulas weak focusing is mainly

assumed.

For each injected proton, one assumes that unambiguous phase space ampli-
tudes and phases, (ax, ψx), (ay, ψy), (as, ψs), can be assigned. It can be noted
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in passing that this is fully useful only in the absence of cross-plane correlation
in six dimensions. Stated differently, it is assumed that the injected beam is
matched perfectly to the lattice upon injection. Otherwise filamentation will
inevitably lead to emittance growth (and possibly to some immediate spin de-
coherence?).

The discussion so far has not allowed for the dependence of proton revolu-
tion time on betatron oscillation amplitude. Before considering spin precession
one can rethink the effect of a systematic energy deviation from design of an
injected beam. We know from experience with storage rings that the beam will
automatically adjust its average radius so that its average revolution period
matches the RF frequency. If the discrepancy is too great some or all of the
beam will strike the chamber wall and be lost. With counter-circulating beams
the situation is the same but, because the beams have not quite the same av-
erage energy, their overlap will be imperfect. Here, where we are concentrating
on the effect of betatron oscillations, we ignore this complication.

Consider first the effect of purely vertical betatron oscillations on the longi-
tudinal equilibrium. There can be no doubt that the circumference of an orbit
that oscillates above and below the horizontal median plane, while staying at
the same radius, is longer than the circumference of its projection onto the me-
dian plane. And yet the RF forces these orbits, on the average, to have the
same period. Unless something is done about it, this would force the velocities
of these orbits to depend on their vertical betatron amplitudes. This would, in
turn, lead to the inexorable growth of the (relative) polarization angle α. Before
thinking about what can be done about it, we can estimate the drift rate. For a
particle with slope y′(≡ dy/ds), the total velocity β and in-plane velocity βhorz.

are related (in paraxial approximation) by

β2 = β2
horz.(1 + y′

2
). (148)

Protons of average r.m.s. slope 〈y′2〉 therefore, on the average, have velocities

β(〈y′2〉) = β0 +
1

2
β0〈y′2〉, (149)

where β0 is the average in-plane velocity enforced by the RF. According to
Eq. (133), this altered velocity will alter the precession rate by the amount

∆
dα

dt
=

eE

mpc

(

gβ0

2
+

1

β0

)

∆β

β0
=
γ0Ec

p0c/e
〈y′2〉. (150)

(A simplifying trick is handy here: since the two terms in parenthesis cancel
when there is a minus sign (that is the magic condition) they must be equal
with a positive sign after differentiation.) In a weak focusing ring the accelerator
lattice beta function βlatt.

y is constant with approximate value

βlatt.
y ≈ C0

2πQy
, (151)
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Figure 8: Excess path length coefficient
∫

〈M2〉ψx,0ds plotted as a function of
tune Qx, holding the circumference constant, for an equal tune FODO lattice.

and the r.m.s. displacements and slopes are related to the vertical emittance by

〈y′2〉 = 〈y2〉
βlatt.
y

2 =
ǫy
βlatt.
y

=
2πQy
C0

ǫy. (152)

Substitution into Eq. (150) yields

d

dt
α(one sigma) =

γ0Ec

p0c/e

2πQy
C0

ǫy (153)

(

e.g.
=

1.25× (17× 106)× (3 × 108)

0.7× 109

2π × 0.5

300
1.0× 10−6

)

= 0.1 r/s.

This decoherence rate (if it were the only contributor) would limit run lengths
to about 10 seconds, which is some two orders of magnitude shorter than the
nominally specified run time. Incidentally, the factor Qy in the final numerator
factor suggests that low tune lattices may be favored.

This issue is analysed quantitatively in Appendix A.1 in which an analytic
excess path length formula is derived. When applied to the equal tune FODO
lattice one obtains the tune dependence shown in Fig. 8. This plot confirms that
low tune values in both planes are desirable for minimizing betatron-induced
decoherence.

Recapitulating, since the RF enforces equal revolution time, variation of path
length implies deviant velocity, which causes spin decoherence. It is possible to
cancel the dependence implied by 〈M2〉 using sextupoles. Apart from the fact
that sextupoles can cause other complications (which favors weak sextupoles)
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for a given fractional compensation precision, the eventual decoherence time
varies inversely with 〈M2〉. From this point of view it can be seen that low
betatron tunes are favored for the EDM experiment.

10 Curved-Planar (Weak) Separated Function
FODO Lattice

The eventual practical proton EDM ring will require long straight sections for
injection, RF cavity, dispersion suppression, and so on, for example as shown in
Fig. 11. But for initial decoherence studies the simplest ring to study is purely
circular. Such a ring is identical to the ring shown in Fig. 11, but with the long
straight sections removed. Another simplification is to treat the quadrupoles
and sextupoles as thin elements. As discussed elsewhere in the report, another
requirement is for both betatron tunes to be as small as is practical. These last
two points mesh nicely, since the required quadrupole focal lengths will be long,
permitting the quad lengths to be short.

For spin decoherence compensation one requires at least three families of
sextupoles. A continuous bend is therefore unsatisfactory. This has led to the
design shown in Table 2 and in Figures 9 through 18, and the following table of
lattice functions. The FODO quad locations are labelled A and B.

-----------------------------------------------------------------------------------

NAME S BETX ALFX BETY ALFY DX PSIX/(2 pi) PSIY/(2 pi)

-----------------------------------------------------------------------------------

m m m m

-----------------------------------------------------------------------------------

"A" 0.000 29.678 0.0000 21.440 0.0000 21.547 0.0000000 0.00000

"QUADA" 0.001 29.677 0.9378 21.440 -0.6776 21.547 0.0000053 0.0000074

"SEXTA" 0.0015 29.676 0.9378 21.441 -0.6776 21.547 0.0000080 0.0000111

"BEND" 0.0015 29.676 0.9378 21.441 -0.6776 21.547 0.0000080 0.0000111

"BENDH" 2.500 25.221 0.8416 25.252 -0.8477 19.879 0.0145481 0.0171336

"C" 2.500 25.221 0.8416 25.252 -0.8477 19.879 0.0145481 0.0171336

"SEXTC" 2.5005 25.220 0.8416 25.253 -0.8477 19.878 0.0145513 0.0171367

"BENDH" 4.9990 21.299 0.7247 29.914 -1.0177 18.284 0.0317240 0.0316247

"BEND" 4.9990 21.299 0.7247 29.914 -1.0177 18.284 0.0317240 0.0316247

"SEXTB" 4.9995 21.298 0.7247 29.915 -1.0178 18.284 0.0317278 0.0316274

"B" 5.0005 21.298 0.0000 29.916 0.0000 18.284 0.0317353 0.0316327

-----------------------------------------------------------------------------------

Compensation of spin decoherence is discussed in Section 12. One quantity

that will be needed there (for both planes) is
∫ ℓC
0

γ ds, where ℓC = 2ℓ = 10 m
is the length of a full cell. Treating the bend regions as drifts (for purposes of
focusing calculations) γx = (1 + α2)/βx and γy are constant through the bend
region. They can be therefore be evaluated at point C. As a result

∫ ℓC

0

γx ds ≈ ℓCγx(C) = 10.0(1 + 0.84162)/25.221 = 0.6773,

∫ ℓC

0

γy ds ≈ ℓCγy(C) = 10.0(1 + 0.84472)/25.252 = 0.6786. (154)
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Table 2: EDM electrostatic lattice parameters. Some entries are evaluated in a
later section. This lattice will prove to be unsatisfactory because the magic γ
and the transition γ very nearly coincide.

quantity symbol unit value
number of full cells NC 20

half-cell length ℓ m 5.0
circumference ℓ0 = 2NCℓ m 200

horz. foc. half quad str. qA 1/m 0.0316013
horx. defoc. half quad str. qB 1/m -0.0340228

horizontal tune Qx 1.2694
vertical tune Qy 1.2653

achromatic sext. strengths SAachrom. 1/m2 0.001411
SBachrom. 1/m2 -0.001790

spin compensated sextupole SAsp.com. 1/m2 0.0017131
strengths SBsp.com. 1/m2 -0.0023739

SCsp.com. 1/m2 -0.00033436

(It is somewhat coincidental that these values are so close. The tunes and beta
functions in any eventually-adopted lattice are likely to be far less equal.

The three sextupole family requirement is met by the presence of sextupole
slots at the A and B locations, as well as at C points at the centers of every
bend element. For really small tunes the beta and dispersion functions would
be more or less constant around the ring which would not provide the necessary
distinction among the A, B, and C locations. To magnify the scalloping of the
lattice functions, a lengthened cell length is suggested. As can be seen from
Fig. 11, there are 10 cells per arc, which is only half as many as has been
assumed in earlier (magnetic) EDM lattices. Preliminary studies show that
there is then sufficient distinction among the A, B, and C points to avoid the
need for special purpose, high beta, compensation sections. This represents a
significant reduction in complexity.

The final two columns of the table give the tune advances per cell in hor-
izontal and vertical planes. With 20 full cells in all, the resulting tunes are
Qx = 20 × 0.03173 = 1.2694 and Qy = 1.2653, essentially equal. This is not
necessarily appropriate, but it seems like a satisfactory starting situation.
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Figure 9: One half cell of a weak FODO lattice with curved-planar electrodes.
In the thin lens model the quadrupole and sextupole elements are treated as
thin elements at lattice points A, C, and B.
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Figure 11: Labels and lengths of an arc half cell and a long straight section
full cell of weak FODO lattice. qC is not a true quadrupole; it represents the
excess (electrostatic) focusing effect of the bend element. Sextupole elements
are shown shaded. The full ring is sketched, with long straight sections having
(tentatively) an odd number (3) of full FODO cells. There are 10 full cells in
each arc.
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11 Qualitative Discussion of Betatron-Induced
Decoherence

For the EDM experiment to succeed it will be necessary to compensate the lat-
tice to reduce the decoherence rate calculated in Eq. (153) (and other) sources of
decoherence. We can regard Eq. (153) as providing the next to lowest order term

of a series in powers of the dimensionless ratio y/βlatt.
y ∼

√

ǫy/βlatt.
y ∼ 10−3. A

compensation scheme cancelling the effect to this order could, in principle, re-
duce the precession rate by a factor of about one thousand. As a matter of fact,
since, by up-down symmetry, expansions in y invariably have only odd powers
of y, the compensation of vertically-induced decoherence could be even bet-
ter. But horizontally-induced decoherence (over and above what is momentum-
correlated) will be at least as important as vertically-induced, and no such
restriction to even powers is guaranteed.

To prevent the inexorable drift of α calculated previously, we have to prevent
βhorz. from changing as a function of vertical betatron amplitude

√

〈y2〉. It
does not do any good to have tailored the local E-field shape judiciously, since
momentum and polarization precession rates have the same dependence on E.
The only way to change βhorz. is to shorten the path length proportionally with
〈y2〉. Only in this way can the magic speed can be retained.

In an EDM note dated 10 October, 2004, (for deuteron EDM) Yuri Orlov
explains how sextupoles in the ring can provide this kind of compensation. Yuri’s
treatment of momentum-dependent compensation is not quite the same as mine
(explained in Section 8.1). This complicates comparison of his treatment with
mine. But, to the extent they are both correct, at some basic level the two
treatments have to be roughly equivalent. Yuri points out that it is impossible
to match three conditions (from three phase space axes, longitudinal, horizontal,
and vertical) with a simple FODO lattice, which has places for only two families
of sextupoles.

A possible workaround for this would be to fully couple horizontal and ver-
tical betatron motions. The simplest way to do this is to run “on the coupling
resonance”. (I recall from some pEDM presentation, that accurate decoupling is
important for the EDM measurement. But I do not remember why.) As long as
the sloshing rate between modes is rapid compared to the decoherence rate any
precession drift while the vertical betatron amplitude is large can be cancelled
by opposite drift when the horizontal amplitude is large. This option is possibly
worth exploring but, for now, I assume that at least three families of sextupoles
will be required.

An optimist might note that there will inevitably be sloshing between hori-
zontal and longitudinal modes. If this represented ideal “mixing” in phase space,
one could hope that the spin decoherence would be somewhat reduced. But any
such mixing is incomplete. For example, in the mixing between horizontal and
vertical, the sum of Courant-Snyder invariants Wx+Wy is preserved. And there
are no doubt similar preserved invariants in six dimensions.

One could induce intentional mixing by interchanging small and large am-
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plitudes in phase space, perhaps by discontinuous frequency modulation of the
RF frequency. But this would probably lead to unacceptable emittance growth.
One (unavoidable) source of mixing, is intrabeam scattering (IBS). To the ex-
tent this causes inexorable and unwelcome emittance growth, it could also lead
to some welcome decrease in spin decoherence (assuming that individual IBS
scatters are spin independent.)

Lattices discussed in the previous, version I, of this report, had the possi-
bility of at least three independent sextupole families, with two of the famillies
assumed to be in special compensating sectors of the lattice. Since those lat-
tices had high tunes they have been jettisoned from this version. Furthermore,
to avoid the complication of special compensation sectors, it now seems prefer-
able to have the compensation distributed uniformly through the arc cells. Low
tunes have also resulted in another simplification. Because only weak focusing
is required, it is unnecessary to use toroidal-shaped bending electrodes.

12 Betatron Decoherence Compensation

The main formulas needed for compensating the lattice against spin decoherence
are given in the appendices. The betatron-induced excess path lengths ∆ℓx(ǫx)
and ∆ℓy(ǫy) are given by Eqs. (189) and (190); they are to be compensated by
sextupoles.

With the horizontal angular deflection caused by a sextupole of strength S
being given by

θx = −1

2
S (x2 − y2), (155)

the average angular deflection is

〈θx〉 = −
1

2
S 〈(x2 − y2)〉 = −1

2
S (ǫxβx − ǫyβy). (156)

(The sign of S here has been chosen so that, with increasing x, a sextupole with
positive S strengthens the focusing of a superimposed quadrupole with positive
q.) One must be certain that the emittances ǫx and ǫy introduced here are
identical to the emittances ǫx and ǫy appearing in Eqs. (189) and (190). The
excess path length ∆ℓ(θx,j) caused by horizontal deflections θx,j at locations j
is given by Eq. (196);

∆ℓ(θx,j) = D(sj) θx,j , (157)

which averages to

〈∆ℓ(θx,j)〉 = −D(sj)Sj
2

(ǫxβx,j − ǫyβy,j) (158)

The condition for path lengths to cancel on the average is

∆ℓx(ǫx) + ∆ℓy(ǫy) = −
∑

j

∆ℓ(θx,j), (159)
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or

ǫx
4

∫ ℓ0

0

γx ds+
ǫy
4

∫ ℓ0

0

γy ds =
∑

j

D(sj)Sj
2

(ǫxβx,j − ǫyβy,j). (160)

To satisfy this condition for all possible combinations of ǫx and ǫy, this single
condition reduces to two conditions;

∫ ℓ0

0

γx ds = 2
∑

j

D(sj)Sj βx,j,

∫ ℓ0

0

γy ds = −2
∑

j

D(sj)Sj βy,j . (161)

Though possible, it is rare for the dispersion to be negative. We assume
D(sj) > 0 and even, for qualitative argument, that D(sj) is roughly constant,
independent of j. Then, of the factors occurring in these conditions, the only
one that can be negative is Sj . To meet the second condition, clearly some of
the Sj values have to be negative. To meet the conditions simultaneously we
will need the Sj values to be large and positive at points where βx,j is large
(compared to βy,j), and we will need the Sj values to be large and negative at
points where βy,j is large (compared to βx,j).

For now we assume the ring consists of NC identical cells, with identical
compensation in each cell. The compensating deflections are to be caused by
sextupole families A, B, and C, with NC identically-powered and situated sex-
tupoles in each family. Then Eqs. (161) reduce to

1

2NC

∫ ℓ0

0

γx ds = DASAβAx +DBSBβBx +DCSCβCx ,

− 1

2NC

∫ ℓ0

0

γy ds = DASAβAy +DBSBβBy +DCSCβBy . (162)

At this point we can also restore “sextupole chromatic neutrality”, as discussed
in Appendix A.3, by imposing the condition

SADA3
+ SBDB3

+ SCDC3
= 0. (163)

For a given lattice configuration, the task is to solve these equations for SA,
SB, and SC .





DAβAx DBβBx −DCβCx
DAβAy DBβBy −DCβCy
DA3

DB3
DC3









SA

SB

SC



 =







1
2

∫ ℓC
0

γx ds

− 1
2

∫ ℓC
0 γy ds
0






. (164)

In the final form the ranges of integration have been reduced from the full ring
circumference to the single cell length ℓC = ℓ0/NC . In this form individual cells
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can be thought of as self-compensating. When the lattice is made more realistic,
for example by the addition of long straight sections, these values can be used
for first approximation. Eventually, though, the equations will have to solved
for the whole lattice.

Copying numerical values from Section 10, Eq. (164) becomes





21.547× 29.678 18.284× 21.298 −19.879× 25.221
21.547× 21.440 18.284× 29.916 −19.879× 25.262

21.5473 18.2843 19.8793









SA

SB

SC



 =





0.6773/2
−0.6786/2

0



 .

(165)

Solving this equation yields

SA = 0.0017131 (166)

SB = −0.0023739 (167)

SC = −0.00033436 (168)

Another approach that can be taken is to leave SC as a free parameter, and
solve the first two equations for SA and SB. This approach yields

SA = 0.4636SC + 0.0018681,

SB = 0.5262SC − 0.0021980. (169)

From the small value of SC , or by comparing Eqs. (168) and (169), one sees
that the chromatic effects of A and B are quite small.
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Figure 14: Plot of uncompensated revolution period T (γ) as a function of γ for
the weak focusing FODO lattice with SC = 0, Qx = 1.2694, Qy = 1.2653.
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Figure 15: Plot of uncompensated revolution period T (γ) as a function of γ for
the weak focusing FODO lattice with SC = 0, Qx = 2.2585, Qy = 1.2566.
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Figure 16: Plot of uncompensated revolution period T (γ) as a function of γ
for the “less weak” focusing FODO lattice, Qx = 3.2547, Qy = 1.2566, with
sextupoles turned off.
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13 Curved-Planar (Less Weak) Separated Func-
tion FODO Lattice and Incorporation of Long

Straight Sections

From the discussion of Section‘12 and figures 14 through 16 it seems clear that
the horizontal tune has to be increased substantially from its earlier assumed
low value. Of the three cases studied previously we pick the highest horizontal
tune case and refer to it as the “less weak” case. Its T (γ) dependence is shown
in Fig. 16, along with its expansion in powers of ∆γ = γ − γ0. As explained
earlier the constant and linear terms are harmless. The first term leading to
decoherence is 4.5× 10−5∆γ2.

The experiment will also need long straight sections, for injection, RF, po-
larimetry, and so on. Commonly one incorporates dispersion suppression caus-
ing the dispersion to vanish through the long straights. Even with serious effort
I have been unable to design such dispersion suppression, without using strong
bends which mangling the decoherence compensation. I conclude it is neces-
sary to “manage” the dispersion. That is to say to “match it through the long
straights, to the previously designed arcs. The decoherence compensation will
still have to be re-done (after more realistic straights are specified) but the
changes should be quite minor.

Parameters of the full ring are given in the following tables and figures. 7

The lattice layout was shown earlier in Fig. 11. The tunes are Qx = 5.20 and
Qy = 1.75. Including phase advances in the long straights, these are larger than
the tunes listed in the caption of Fig. 16.

-----------------------------------------------------------------------------------

NAME S BETX ALFX BETY ALFY DX PSIX/(2 pi) PSIY/(2 pi)

-----------------------------------------------------------------------------------

m m m m

-----------------------------------------------------------------------------------

"A" 0.0000 15.1937 0.0000 17.8478 -0.0000 3.7688 0.0000000 0.0000000

"QUADA" 0.0010 15.1925 1.2309 17.8492 -1.4462 3.7687 0.0000105 0.0000089

"SEXTA" 0.0015 15.1912 1.2308 17.8507 -1.4463 3.7685 0.0000157 0.0000134

"BEND" 0.0015 15.1912 1.2308 17.8507 -1.4463 3.7685 0.0000157 0.0000134

"BENDH" 2.5000 10.0038 0.8411 26.1591 -1.8791 3.0928 0.0324636 0.0184564

"C" 2.5000 10.0038 0.8411 26.1591 -1.8791 3.0928 0.0324636 0.0184564

"SEXTC" 2.5005 10.0030 0.8410 26.1610 -1.8792 3.0927 0.0324715 0.0184595

"BENDH" 4.9990 6.8194 0.4306 36.6324 -2.3119 2.5941 0.0813320 0.0313186

"BEND" 4.9990 6.8194 0.4306 36.6324 -2.3119 2.5941 0.0813320 0.0313186

"SEXTB" 4.9995 6.8190 0.4305 36.6347 -2.3120 2.5940 0.0813437 0.0313208

"QUADB" 5.0005 6.8186 0.0000 36.6370 -0.0000 2.5939 0.0813670 0.0313252

"B" 5.0005 6.8186 0.0000 36.6370 -0.0000 2.5939 0.0813670 0.0313252

-----------------------------------------------------------------------------------

7Question from recent weekly conference call: “What is the slip factor η0?”. It is related
to the so-called transition gamma γt by

η0 =
1

γ2
t

−
1

γ2

0

=
1

3.6682
−

1

1.252
= −0.566. (170)
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Figure 17: Less weak FODO, single cell beta functions
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Figure 18: Less weak FODO, single cell beta dispersion
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Figure 19: Beta functions for full racetrack ring with dispersion “managed” in
the long straight sections.
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Figure 20: Dispersion function for full racetrack ring with dispersion “managed”
in the long straight sections.
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Table 3: EDM electrostatic lattice parameters for the “less weak” option, in-
cluding long straight sections.

quantity symbol unit value
number of arc cells NC 20
number of arc cells Nss 6

half-cell length ℓ m 5.0
circumference ℓ0 = 2(NC +Nss)ℓ m 260.006

horz. foc. half quad str. qA 1/m 0.08102
horx. defoc. half quad str. qB 1/m -0.06311

horizontal tune Qx 5.1999
vertical tune Qy 1.7495
transition γ γt 3.668

achromatic sext. strengths SAachrom. 1/m2 0.02127
SBachrom. 1/m2 -0.02406

spin compensated sextupole SAsp.com. 1/m2 0.01802
strengths SBsp.com. 1/m2 -0.03303

SCsp.com. 1/m2 -0.01312
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14 Numerical Examples

Corresponding to ±∆γ the range of fractional momenta is

± ∆p

p
= ±E

2

p2

∆γ

γ
= ±∆γ

β2γ
= ±2.238∆γ. (171)

According to Eq. (141), the polarization angle α of an individual proton sweeps
fast (at the synchrotron oscillation frequency) back and forth through a range

±α(F )
max = ±3.586

∆γmax

Qs
= ±1.60

(∆p/p)max

Qs
. (172)

This motion causes no decoherence but, if the range is too great, the secular
vertical precession due to the electric dipole moment, whose measurement is the

purpose for the experiment, will be unacceptably reduced. Let αmax−max
say
=

0.5 r be an arbitrarily-assigned, maximum acceptable excursion angle.
At this point it seems prudent to compare with previous formulations of the

synchrotron oscillation modulated spin precession. Eq. (3) on page 7 of the
pEDM experimental proposal[7], gives

ωa = − e

mp

(

g

2
−

(

1 +
(mpc

2

pc

)

)2
)

β ×E

c
(173)

as the anomolous precession rate. With β perpendicular to E, taking absolute
values, and identifying ωa = dα/dt, this reduces to our Eq. (133). According to
Eq. (10) in the same pEDM proposal, the deviant precession rate caused by a
deviant fractional momentum (∆p/p) is given by

d

dt
∆α =

Ec

mpc2/e

(

2β
(mpc

2

pc

)2
)

(∆p/p) =
Ec

mpc2/e

(

2

βγ2

)

(∆p/p)

=
(17× 106)× (3 × 108)

0.938× 109

(

2

0.6× (1.25)2

)

(∆p/p)

= 1.16× 107 (∆p/p). (174)

For example, during a revolution time of 10−6 s, a fractional momentum offset of
0.001 would cause a precession angle deviation of 0.0116 r. (In an estimate dated
April 2, 2010, Bill Morse, for time = 10−6 s, ∆β = 0.001, gets a precession angle
deviation of 0.028 r. I get that ∆β = 0.001 corresponds to fractional momentum
offset of 0.0026. For this case Eq. (174) gives 0.030 r, in quite good agreement
with Bill’s value.)

During synchrotron oscillation at synchrotron tune Qs the fractional mo-
mentum offset is given by

(∆p/p) = (∆p/p)max sin(2πQst/T0). (175)
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Substituting this into Eq. (174) and integrating gives

∆α = 1.16× 107 (∆p/p)max

∫ t

0

dt′ sin(2πQst
′/T0)

= −1.16× 107 T0

2πQs
(∆p/p)max cos(2πQst/T0) (176)

Taking T0 = 1µs as a typical revolution period, this determines the ratio

Qs
(∆p/p)max.

=
1.16× 107 T0

2παmax−max.
=

11.6

π
= 3.69. (177)

The same line of reasoning applied to Eq. (172) yields

Qs
(∆p/p)max

=
1.60

α
(F )
max−max.

=
1.60

0.5
= 3.20. (178)

This agrees fairly well with the preceeding determination. Setting aside the
question “why do they not agree exactly” (µs << 1 approximation?) one can
note from the latter determination that the ratio is independent of electric field,
RF frequency, and revolution period.

Based on limiting the momentum-correlated precession range, there is no
reason for Qs to be larger than needed to satisfy Eq. (178). Increasing Qs from
there, for example to obtain shorter bunch length, would reduce the precession
range beneficially.

Correlating with candidate injected beam momentum spread values from a
Semertzidis note dated 14 March, 2010, one obtains the values shown in Table 4.
The upper two rows correspond more closely to entries in a table due to Alexei
Fedotov, to be discussed below. From Eqs. (171) and (178) and formulas in
Section 8.1 one has

∆γmax. = 0.4468 (∆p/p)max,

Qs = 1.60
(∆p/p)max

αmax−max
,

V̂RF = GRF µs (mpc
2/e)∆γmax,

tmax =
1

ωRF

1

GRF
,

ℓmax = 0.598 ctmax. (179)

These formulas do not fix GRF , which is a number that has to be substan-
tially larger than 1 for the linearized treatment of synchrotron motion to be
accurate. The numerical values in Table 4 assume GRF = 2, αmax−max = 0.5,
and ωRF /(2π) = 100 MHz. To bring the upper two rows into tolerably good
agreement with Alexei’s December 17, 2009 report at the BNL review, “After
capture in barriers need to make ...”, I need to assume that the row labelled
“Synchrotron tune” is actually “synchrotron frequency” which is 2π times the
synchrotron tune. (Otherwise his Qs/(∆p/p) ratio seems impossibly high.)
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Table 4: RF parameters assuming GRF = 2, αmax−max = 0.5 r, and ωRF /(2π) =
100 MHz.

(∆p/p)max. ∆γmax. Qs VRF [KV] tmax[ns] ℓmax[m]
0.0032 0.00143 0.01 172.6 0.796 0.143
0.0016 0.000715 0.00512 43.14 0.796 0.143
0.001 0.000447 0.00320 16.85 0.796 0.143
0.0008 0.000357 0.00256 10.79 0.796 0.143
0.00025 0.000112 0.00080 1.053 0.796 0.143
0.000075 0.0000335 0.00024 0.0948 0.795 0.143
0.000025 0.0000112 0.000080 0.0105 0.795 0.143
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A APPENDICES

A.1 Excess Path Length Resulting from Betatron Oscil-
lation

We study path length variation due to betatron oscillations. For a semi-quant-
itative numerical example we will use the equal-tune-FODO, cirular lattice of
radius ρ0 described in Section 3. This model neglects both the geometric fo-
cusing in the bend field (which is usually small compared to separated function
focusing) and the dependence of proton potential energy on radial position in a
electrostatic lattice. The results will later be generalized to arbitrary lattices.

A.1.1 Horizontal Betatron Oscillations

We use cylindrical, (ρ = ρ0 + x, φ = s/ρ0, y) coordinates, where y replaces the
vertical variable more conventionally denoted by z. In these coordinates, the
path length ℓ of a particle orbit ρ = ρ(φ) lying in the horizontal plane is given
by

ℓ =

∫ φ2

φ1

dφ

√

ρ2(φ) +

(

dρ

dφ

)2

=

∫ ℓ0

0

ds

√

ρ2 + ρ2
0ρ

′2

ρ0
, (180)

where ρ′ ≡ dρ/ds and ℓ0 is the length of the design orbit. The orbit of a particle
executing horizontal betatron oscillations with Courant-Snyder amplitude

√
ǫx,

is given by

ρ(s) = ρ0 +
√

ǫxβx(s) cos
(

ψx(s) + ψx,0
)

,

ρ′(s) =
1

2

√

ǫx
βx

β′

x −
√

ǫxβx(s)ψ
′

x sin
(

ψx(s) + ψx,0
)

=

√

ǫx
βx

(

β′
x

2
cos

(

ψx(s) + ψx,0
)

− sin
(

ψx(s) + ψx,0
)

)

, (181)

where ψx,0 is the initial betatron phase, ψx(s) is the further phase advance
through distance s, and ψ′

x = 1/βx has been used. Note that the first of
Eqs. (181) serves do define the C-S invariant ǫx. As the phase ψx(s) scans
through all possible values, the maximum excursion at s is given by

√

ǫxβx(s).
Then

ρ2 + ρ2
0ρ

′2 = ρ2
0

(

1 +
2
√
ǫxβx
ρ0

cos
(

ψx(s) + ψx,0
)

+ ǫx
M1

ρ2
0

)

, (182)

where

M1 = βx cos2
(

ψx(s)+ψx,0
)

+
ρ2
0

βx

(

β′
x

2
cos

(

ψx(s)+ψx,0
)

−sin
(

ψx(s)+ψx,0
)

)2

.

(183)
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The integrand of Eq. (180) can be expanded as
√

ρ2 + ρ2
0ρ

′2

ρ0
≈ 1 +

√
ǫx

√
βx
ρ0

cos
(

ψx(s) + ψx,0
)

+ ǫxM2, (184)

where

M2 =

(M1

2ρ2
0

− βx cos2
(

ψx(s) + ψx,0
)

2ρ2
0

)

=
1

2βx

(β′
x

2
cos

(

ψx(s) + ψx,0
)

− sin
(

ψx(s) + ψx,0
)

)2

. (185)

The orbit length is then

ℓ ≡ ℓ0 + ∆ℓx =

∫ ℓ0

0

ds

(

1 +
√
ǫx

√

βx(s)

ρ0
cos

(

ψx(s) + ψx,0
)

+ ǫxM2

)

. (186)

The first term integrates to l0, the length of the design orbit. To obtain the
orbit length averaged over many turns one can average over ψx,0 since betatron
phases are distributed uniformly. The second term vanishes in this averageing.
Averaging the final term,

〈M2(s)〉ψx,0 =

∫ 2π

0

dψx,0
2π
M2(ψx(s), ψx,0) =

1

4βx

(

1 +
β′
x
2

2

)

=
γx
4
, (187)

where the other Twiss parameters, αx = −β′
x/2 and γ = (1+α2

x)/βx have been
used. Then the excess length is given by

∆ℓx =
ǫx
4

∫ ℓ0

0

γx(s) ds. (188)

This integral can be taken over the full ring or, equivalently. taken over individ-
ual elements and then summed. Note though that straight sections contribute
to the path length excess.

Evaluating these integrals for the equal tune FODO lattice gives the depen-
dence on machine tune Qx of the averaged excess length coefficient shown in
Fig. 8.

A.1.2 Vertical Betatron Oscillations

The path length in the presence of vertical betatron oscillations is given by a
formula much like Eq. (180);

ℓ =

∫ φ2

φ1

dφ

√

ρ2(φ) +

(

dy

dφ

)2

=

∫ ℓ0

0

ds

√

ρ2 + ρ2
0y

′2

ρ0
. (189)

The equations governing vertical oscillations can be transcribed from Eq. (181),
and the subsequent derivation proceeds as for horizontal oscillations. The final
result, then, is

∆ℓy =
ǫy
4

∫ ℓ0

0

γy(s) ds. (190)
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A.2 Relation Between Dispersion Function and the Closed
Orbit Path Length Deviation Caused by a Local De-
flection

Using sextupoles, one wishes to alter the closed orbit path length as a function
of horizontal and/or vertical Courant-Snyder invariants. There is a remarkable
formula relating path length deviation caused by a deflection θx|P at lattice
point P and the dispersion function D|P at the same point P. This appendix
supplies a derivation of the result whose validity, seems to be well known[14],
but whose derivation is hard to find documented.

The difference equation describing the perturbative effect of deflection θx
occurring at a point (to be taken as the origin) on successive turns of horizontal
betatron motion is

xj+1 − 2 cosµxxj + xj−1 = θxβx(0) sinµx, (191)

where µx = 2πQx is the once-around phase advance. (To derive this equation
one applies the once-around transfer matrix (in Twiss form) to propagate the,
deflected by θx/2 orbit, forward by one turn and, with the inverse of the once-
around transfer matrix, back-propagate the, undeflected by θx/2 orbit, by one
turn.) Solving this equation, one finds the closed orbit deviation and slope at
the origin to be

x(0) = βx(0)
sinµx

2(1− cosµx)
θx = βx(0)

cos(µx/2)

2 sin(µx/2)
θx,

x′(0) = −αx(0)
cos(µx/2)

2 sin(µx/2)
θx. (192)

Propagating this result forward from the origin to longitudinal position s, one
obtains

x(s) =
√

βx(0)βx(s)
cos(ψx − µx/2)

2 sin(µx/2)
θx, (193)

where ψx is the phase advance from the origin to s. (As well as satisfying the
initial and final conditions at the origin, this function evolves correctly with s.)

We now use this result to derive two not-obviously-related quantities: the
excess closed orbit path length ∆ℓ resulting from the deflection θx; and the
dispersion function D(0) at the origin. The excess path length ∆ℓ = ℓ − ℓ0 is
given by

∆ℓ =

∫ ℓ0

0

x(s)

ρ(s)
ds,= θx

β
1/2
x (0)

2 sin(µx/2)

∫ ℓ0

0

β
1/2
x (s)

ρ(s)
cos(ψx − µx/2) ds. (194)

On the other hand the dispersion function at the origin can be visualized as
having resulted from the superposition of angular deflections δ(ds/ρ(s)) due to
the fractional rigidity offset δ through the ds intervals making up the ring;

D(0) = δ
β

1/2
x (0)

2 sin(µx/2)

∫ ℓ0

0

β
1/2
x (s)

ρ(s)
cos(ψx − µx/2) ds. (195)
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Comparing these two equations yields the important result

∆ℓ = D(0)θx. (196)

A.3 Sextupole Chromatic Neutrality

The purpose for the A and B sextupole families is to cancel path length depen-
dence on horizontal and vertical betatron amplitudes. The purpose for the C
sextupoles is to compensate for chromatic (i.e. γ-dependent) decoherence. At
least part of this mission is to cancel any chromatic dependence on path length
caused by the A and B sextupoles.

According to Eq. (155) dispersion-proportional displacement DAδ at an A
sextupole, causes an angular deflection −(SA/2)(DAδ)2, for fractional momen-
tum offset δ. From Eq. (196) one sees that the resultant path length deviation
is

∆ℓ ≈ −S
ADA3

2
(γ − γ0)

2

(

dδ

dγ

)2

. (197)

The effect of A and B sextupoles can be counteracted by the C sextupoles by
enforcing the condition

SCDC3
= −SADA3 − SBDB3

. (198)
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